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ABSTRACT

The object of this research is the development of systematic meth-

ods for the analysis of networks which contain piecewise-linear (PWL)

elements. Many physical devices have nonlinear characteristics that can

be closely approximated by PWL characteristics. In order to facilitate

the systematic analysis of networks that contain such devices, "PWL

operators" have been introduced to represent the characteristic curves

of PWL elements.

Rules for addition, subtraction, multiplication, inversion, and

other operations with PWL operators have been formulated, and the alge-

braic properties of these operations have been studied. Addition of PWL

operators is associative and commutative, and multiplication is associa-

tive but not commutative. Methods for solving PWL-operator equations

have also been investigated.

The input and transfer characteristics of resistive PWL ladder net-

works can easily be calculated in terms of PWL operators. A general

procedure has been formulated for analysis of any network that contains

an arbitrary configuration of linear resistors and two PWL resistors.

Analysis of resistive PWL networks with three PWL resistors leads to an

equation of the form

A(X + I) = BX + C

where A, B, and C are known NL operators, I is the identity operator,

and X is an unknown PWL operator. Because the distributive law for PWL

operators does not hold from the left, this equation cannot be solved

in terms of the basic algebraic operations; therefore, a new operation

called "trivolution" has been defined to solve this equation.

PWL operators are useful in the analysis of electronic circuits.

For large-signal operation, the characteristics of diodes, vacuum tubes,

transistors, and other electronic devices can be approximated by PWL

characteristics and described in terms of PWL operators. PWL input and

transfer characteristics of electronic circuits can be determined by

this method.
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To describe the behavior of PWL networks which contain energy stor-

age elements, PWL differential equations can be formulated in terms of

PWL operators. For PWL R-C, R-L, and L-C network problems, solutions to

these differential equations can be expressed in terms of PWL operators.

For example, the voltage across a parallel combination of a PWL resistor

and a PWL capacitor can be expressed as a PWL operator operating on an

exponential with a PWL exponent. Further development of methods for

solving PWL differential equations is needed.

The use of PWL operators provides a convenient way of solving PWL

network problems on a digital computer. Programs have been written for

the Burroughs 220 Computer for carrying out algebraic operations with

PWL operators and for solving PL-operator equations. Iterative methods

have been developed for computer solution of higher-order PWL equations

and sets of simultaneous PWL equations that cannot be solved directly in

terms of the basic algebraic operations.

Since any nonlinear element can generally be approximated by a PWL

characteristic within any desired degree of accuracy, it is hoped that

the PWL operator method which has been developed will have fairly wide

application to the approximate analysis of nonlinear networks.
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I. INTRODUCTION

The object of this research has been to develop systematic methods

for the analysis of networks that contain piecewise-linear elements. A
.

general method has been developed for analysis of resistive PWL networks,

and special cases of PWL networks containing reactive elements have been

solved. One reason for studying PWL-network theory is that many electron-

ic devices such as diodes, transistors, and vacuum tubes have character-

istics which can be closely approximated by PWL curves. Furthermore,

almost any nonlinear characteristic can be approximated to any desired

degree of accuracy by a suitably chosen PWL characteristic. Although PWL

networks are more difficult to analyze than linear networks, they are

easier to analyze than more general nonlinear networks. For this reason,

* PWL-network theory is useful for the approximate analysis of nonlinear

networks. The study of PWL networks is a compromise between studying

linear networks, which have already been extensively studied, and non-

* linear networks, which are very difficult to analyze.

In general, it is possible to analyze a PWL network on a section-by-

section basis. This method reduces the solution to a series of linear

problems, each of which can be solved by standard linear-circuit tech-

niques. After solution of each linear problem, one must determine which

PWL element will next change to a new section of its PWL characteristic

and then formulate the appropriate boundary conditions for the next linear

problem. When the number of PWL elements is large, or when each PWL char-

acteristic curve has a large number of sections, solution on the section-

by-section basis becomes very tedious. The need for a more systematic

method for analysis of PWL networks is thus apparent. A systematic meth-

od of analysis and a concise notation are also needed in order to utilize

high-speed digital computers efficiently for the solution of PWL networks.

PWL will be used as an abbreviation for piecewise-linear.
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A. PWL-NETWORK MODELS

The use of idealized models is necessary in the analysis of physical

systems. Such models abstract the essential properties of the physical

system, but at the same time they are simple enough to be useful for pur-

poses of analysis. For a given physical device, different models can be

constructed to serve different purposes. The type of model that is used

often depends on the amplitude and frequency of the input to the system.

For small-signal analysis, a linear model may be used; but for different

regions of operation, different linear models may be required. For oper-

ation over a large range of inputs, a linear model is often inadequate

and a nonlinear or a PWL model is needed.

The nonlinear i-v characteristic of a typical tunnel diode [Ref. 1]

is shown in Fig. 1. For small-signal operation about the point vo, the

linear model of Fig. 2 may be used, with -go equal to the slope of the

i-v curve at the operating point. For large-signal operation, the i-v

characteristic may be approximated by a five-section PWL curve as shown.

Either fewer or more sections may be used in the PWL approximation, de-

pending on the accuracy which is needed.

Circuit models for PWL devices can be constructed using ideal diodes,

linear resistors, and sources. The ideal diode, whose v-i characteristic

is shown in Fig. 3, has two states. When i > 0, v = 0 and the diode is
"on"; when v < O, i = 0 and the diode is "off". Fig. 4 shows one poisi-

ble circuit model for the PWL tunnel diode characteristic of Fig. 1. In

this model, diode D1 conducts for v < vl, D2 for v < v2 , D3 for v > v3,

and D4 for v > v4 .

B. METHODS FOR ANALYSIS OF PWL NETWORKS

There are two basic approaches to the analysis of networks that con-

tain resistive NWL elements. In the first approach, a circuit model com-

posed of ideal diodes, resistors, and sources is constructed for each PWL

element, and the resulting resistive-diode network is analyzed by con-

sidering the states of the individual diodes. In the second approach,

the characteristic curves of the PWL elements are represented symboli-

cally, and the analysis is carried out directly in terms of this symbolism.
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When the latter approach is used, the necessity for drawing diode models

is eliminated; therefore, it is unnecessary to consider the individual

diode states during the process of analysis.

There are two conventional methods for analyzing resistive diode net-

works--the method of assumed states and the breakpoint method. These

methods are discussed in detail with many examples in Electronic Oircuib

Theory [Ref. 21]. In the method of assumed states, the circuit is analyzed

using all possible combinations of diode states. For each assumed set of

diode states, each conducting diode is replaced with a short circuit, each

nonconducting diode is replaced with an open circuit, and the circuit re-

duces to a network of linear resistors and sources. The v-i characteris-

tic of each reduced network is a straight line, and the PWL characteristic

of the original network must consist of portions of these lines. The ap-

propriate portions of the lines can usually be determined by considering

what happens in the network as the terminal voltage or current is varied.

If the network contains n diodes, there are 2n possible combinations of

diode states; consequently, the amount of work required for this method

increases rapidly with the size of the network. Furthermore, much of

this work may be wasted because many of the possible combinations of diode

states may never actually occur for any input voltage.

The breakpoint method is usually more efficient than the method of

assumed states. The points at which successive line segments of a PWL

curve meet are called breakpoints. A FWL curve is completely determined

by specifying the coordinates of its breakpoints and the slope of both

end segments. Each breakpoint on the characteristic curve of a diode net-

work corresponds to a change of state of one of the diodes. At the break-

point of a diode, the current and voltage are both zero for that diode.

This constraint determines the input voltage and current to the network

at the breakpoint if the states of the other diodes are known. The break-

points can be determined successively by considering what happens in the

network as the terminal voltage or current is increased.

An algebraic method for analysis of simple diode networks was pre-

sented by Schaefer [Ref. 31 in 1954. Stern [Refs. 4,5] developed an im-

proved and more-general version of this algebraic method in 1956. In

Stern's method, the characteristics of PWL elements are expressed
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symbolically in terms of 0 + and 0- transformations (see Section II. E).

To analyze a network, loop or node equations can be written in terms of

these transformations. By applying the rules of Stern's algebra, these

equations can be solved for the desired PWL characteristic. Stern's

method is discussed further in Appendix A and in Section X. B. Dennis

[Ref. 6] gives a procedure for tracing the PWL curve of a resistive diode

network. This procedure is related to the methods of quadratic program-

ming used in operations research.

C. THE PWL-OPERATOR METHOD

The existing methods for analysis of PWL networks have been briefly

discussed. As an attempt to find a more systematic method that is suita-

ble for use with a digital computer, the PWL-operator method has been

developed. In Chapter II, PWL operators are defined to represent the

characteristic curves of PWL elements. The basic algebraic operations

are defined for PWL operators and the algebraic properties of these op-

erations are studied in Chapter III. Chapter IV introduces a new opera-

tion, which solves a class of PWL-operator equations that cannot be

solved in terms of the basic algebraic operations. In Chapter V, PWL-

operator methods are applied to determine input and transfer character-

istics of resistive PWL networks, and in Chapter VI, the analysis of PWL

two-ports is considered. PWL-operator methods are used to analyze vacuum-

tube and transistor circuits in Chapter VII. Extension of PWL-operator

methods to PWL networks that contain reactive elements is considered in

Chapter VIII. Chapter IX discusses computer programs for the analysis of

PWL networks.

The PWL-operator methods are not intended to be mathematically rigor-

ous in all cases, but rather are intended to be practical methods of solv-

ing problems. Instead of being cpncerned with rigorous definitions and

proofs of theorems, for the most part, we will deal with the development

of the theory and its practical application. Although an attempt has

been made to make the theory as generally applicable as possible, excep-

tional "pathological" examples occur where an invalid solution is occa-

sionally obtained. Since these pathological cases generally correspond

to non-physically-realizable situations, we are not concerned with them

as engineers, and we will let the mathematicians worry about them.
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II. MATHEMATICAL REPRESENTATION OF PWL CURV!8

The first step in developing a systematic method for analysis of PWL

networks is to determine a concise mathematical representation for PWL

curyes. After examination of some of the types of NL curves that can be

encountered in the analysis of resistive PWL networks, PWL operators are

defined to represent such curves. Stern's notation for representing PWL

functions is also discussed.

A. CHARACTERISTIC CURVES OF RESISTIVE PWL NETWORKS

A PWL curve consists of a series of adjoining line segments. PWL

curves can be classified according to their range of definition. They

can be defined for (1) an infinite, (2) a semi-infinite, or (3) a finite

range of values of the independent variable. Furthermore, two or more

separate curves of these types may be combined to form a composite char-

acteristic curve. Network models composed of ideal diodes, positive and

negative resistances, and independent and dependent sources will be used

to illustrate some of the types of PWL characteristic curves that.can

occur.

The first type of PWL curves, which are defined for all values of

the independent variable, occur most frequently. Examples of networks

having this type of v-i characteristic are given in Figs. 5 and 6.

The ladder network of Fig. 5a is easily analyzed by the breakpoint method.

The results of this analysis are given in Figs. 5b and 5c. The states of

the ideal diodes are indicated by l's and O's, where "l" indicates that

the diode is on, and "0" indicates that the diode is off.

A negative resistance, -R, is equivalent to a positive resistance in

parallel with a dependent current source as shown:

+ i 2
V

For further discussion of negative resistance, see [Ref. 2, pp. 437-438].
All numerical values given on illustrations will be in ohms, volts, and
amperes unless otherwise specified.

- 6 -



+ 2

1 2 1/2

(a)

2"

(b)

DIODE STATES RANGE OF
Ds OR D2 D- CURRENT VOLTAGE

I 0 0 I I < -4 v a -1 + 1/2

I 0 0 0 -4 < I < -3 v - 5 + 21
I 0 1 0 -3 < I < I v- 2+ I
I I I 0 1 < I< I v -/3+ 1/3
0 I I 0 it< I v- 0+ I

(c)

FIG. 5. LADDER NETWORK AND ITS V-I CHARACTERISTIC.

-7-



i 1 D2 2"D o

+ .2 01 .n - i

DI on

-6

(b)

0 12 0 21

-2 - --

++

00

(c)

2

4a -2 0/ 6 V

-2

(d)

FIG. 6. NETWORKS WITH MULTI-VALUED PWL CHARACTERISTICS.

- 8 -



The network of Fig. 6a has an i-v characteristic that is single-valued,

but the corresponding v-i characteristic is multi-valued. Adding a depen-

dent current source of value vI and a 1-ohm resistor to this network yields

the network of Fig. 6c. The added network brings about the following

transformation:

i2 = i1 - v1 = 1(ilcos 450 - vlsin 450)

v2 = iI + v1 = r2 (i1 cos 450 + vlsin 450)

This transformation rotates the i-v characteristic (Fig. 6b) by 450 and

changes the scale by a factor of 42, yielding the new i-v characteristic

(Fig. 6d). This new curve is multi-valued in both variables.

Examples of the second type of PWL characteristic, which is defined

for a semi-infinite range of values of the independent variable, are given

in Fig. 7. The network of Fig. 7a has a v-i characteristic (Fig. 7b) that

is defined only for i > 0. When the diode is off, v = -i, while when the
diode is on, v = +i. To verify that the characteristic is undefined for

i < 0 let i = -io . If we assume that the diode is 2, v = -iOP which im-
plies that the voltage across the diode is negative, and the diode is off.

On the other hand, if we assume that the diode is off v = +io, which im-

plies that the voltage across the diode is positive and the diode is on.

Since either assumption leads to a contradiction, we can only conclude

that the characteristic curve is undefined for i < 0. At this point, one

may be tempted to inquire what would happen if we actually built the net-

work and placed a negative current source across its terminals. The dif-

ficulty here results from over-idealization of the network model. In

practice, it is impossible to build a device which has a negative-

resistance characteristic over an infinite range of voltage since such a

device would have to be capable of supplying infinite power. Eventually,

for sufficiently large values of voltage, the negative-resistance device

must have positive resistance, which implies that the characteristic of

Fig. 7b must eventually double back if it is to represent a physically

realizable network.
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Another embarrassing question one might ask about the characteristic

of Fig. 7b is which branch of the curve would be followed if the input

current were increased starting with i = 0. In order to answer this

question, we must again modify our ideal model and consider the presence

of parasitic elements. The difficulty can be resolved if we place a

stray capacitance across the input terminals of the network. When the

current is increased, it will initially flow into the capacitor, start-

ing to charge it to a positive voltage. The diode will then start con-

ducting, which makes the circuit look like a 1-ohm resistor in parallel

with the capacitor, and the upper part of the curve will be followed as

the current is increased.

Placing a current source of value i a in parallel with the network of

Fig. 7a, as shown in Fig. 7c, gives a characteristic curve (Fig. 7d) that

is defined only for i > ia . Reversing the diode (Fig. 7e) gives a char-

acteristic (Fig. 7) defined only for i < ia.

Examples of the third type of PWL characteristic, which is defined

for only a finite range of values of the independent variable, are given

in Figs. 8 and 9. The network of Fig. 8a consists of the network of

Fig. 7a in series with the network of Fig. 7e with ia = 1. Since the

current is the same in both series networks, the composite characteristic

is obtained by adding voltages that correspond to the same value of cur-

rent on the characteristics of Figs. 7b and 7f. Since adding something

undefined to something defined yields something undefined, the resulting

characteristic curve, Fig. 8b, is undefined for i < 0 or i > 1. In ad-

dition to being a closed loop, this characteristic has the interesting

property that it crosses itself without actually intersecting. It is im-

possible to go directly from segment AC to segment BD at. the crossover

point (v = 0 and i = J) because each segment corresponds to a different

state of the diodes (Fig. 8c) and there is no external means of causing

the diodes to change state while keeping both v and i constant. Further-

more, when we are operating at the crossover point, just specifying v and

i is insufficient to tell us what the internal state of the network is.

The network of Fig. 9a, which contains a dependent current source and

a negative resistance, has a v-i characteristic which is a closed paral-

lelogram (Fig. 9d). When i1 > 0, diode D2 is on, and the network reduces

- 11 -



p /

(a) / D C

(b)

Diode States Range of
Segeent D2  D1  current Voltage

AC 0 0 0 < i < 1 v = (1-i) + (-i) = 1-21
CD 1 0 0 Zi< 1 v = (-l+i) + (-i) -1
DB 1 1 0ZiZ1 v =(-l+i)+ i - -l+21
BA 0 1 o iZ1 v=(1-i) + i = 1

(C)

FIG. S. NETWORK WITH ITS V-I CHARACTERISTIC DEFINED FOR A FINITE RANGE OF CURRENT.

to Fig. 9b. When i I < 0, D2 is off, and the network reduces to Fig. 9c

after transforming the dependent source and canceling the negative resist-

ance. The characteristic of Fig. 9d can then be derived from Fig. 9b and

9c, noting that D1 is off when (i1 - 2vl) < 0 and D1 is on when (il-2vl)

> 0.

Examples of networks whose characteristic curves have two distinct

branches are given in Figs. 10 and U1. The characteristics of the two

subnetworks which compose the network of Fig. lOa are shown as dashed

lines in Fig. lOb. Since the subnetworks are in series, the overall v-i

characteristic is obtained by adding voltages which correspond to the

same value of current on the dashed curves. The resulting curve has two
distinct branches, and the v-i characteristic is undefined for i > 0 or

-1 < v < +1.

Addition of a diode, resistor, and current source to the network of

Fig. 9a yields the network of Fig. lla. The v-i characteristic of this

- 12 -



+1- DI

+ 12v

Vi

(a)

++ I

- 1/ 11 -V il 2v, +
1/ 1/2 2v,

0 0-

%bi 11 > 0, 02 On (c) ii < 0, 02 Off

Ig2vu DIODE STATES RISE OF VOTGEV
0, D1 CURRENT (AMP ) LEV

loO 0 - 2 <11< 0 V 1 a + I

0 I -2 < il < 0 vi = -

-2 1 i '2 i1 1 < 11<2 vi iI- I

1 0 0< i I< 2 Vi I

(d)

FIG. 9. NETWORK WITH A CLOSED-LOOP V-I CHARACTERISTIC,
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network has two distinct branches (Fig. llc). When (i1 - 2v1 ) < 7/2, D3

is on, and the network reduces to Fig. 9a, which has the closed-loop v-i

characteristic shown above the dashed line in Fig. llc. When

(i I - 2vI ) > 7/2, D3 is off, and the network reduces to Fig. llb, which

has the monotonic v-i characteristic shown below the dashed line.

The above examples illustrate some of the many types of v-i character-

istics that resistive PWL networks can have. Any method of analysis that

is to be generally applicable to PNL networks containing controlled

sources or negative resistances must be capable of handling characteristic

curves that are multi-valued and that may be undefined for some regions

of the variables. Before developing methods of analysis, mathematical

representations of PWL curves will be formulated.

B. REPRESENTATION OF PL CURVES BY PWL OPERATORS

A straightforward way to describe a IL curve is to list the linear

equation for each section of the curve, together with the range over

which this equation is valid. This method of description is adequate for

all types of PWL curves, including multi-valued curves. Examples of this

type of representation are given in Figs. 5c and 9e.

A PWL curve with n linear sections, which is defined for all values

of x, can be specified by the following equations:

y = ql + rlx (x < bl)

Y = q2 + r 2 x (x between b1  and b2)

. qk + rkx (k between bk-l and b k) (1)

= qn+rx (k > bn-1 )

where qk is the y-intercept of the kth section,

rk is the slope of the kth section, and

bk is the abctsa of the intersection of the section and the
(k+l) section.

The equations of the sections are listed in the order in which they oc-

cur as the WL curve is traced out, starting at the left. When x = bk,
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FIG. 10. NETWOM WITH A V-1 CAACTEISTIC .0000 .00

HAVING TWO DISTINCT BRANCHES. -

/ li on
/ / 1

(b)

0-

(a)

0.. -7ai i 2

(b) (Ig-tyg) > 0 Ps o5ff

FIG., 11. NETWOU WITH A V-I CZA3ACTISTIC HAVING TWO DISTINCT DUANCHIS.
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Y - qk + rkk '2 qk+l + rk~lbk (2)

Solving for the kth breakpoint yields

b qk+l qk (3)b =k r k+1

Since the breakpoints can be calculated in terms of the slopes and inter-

cepts, it is unnecessary to specify the breakpoints separately, and the

above set of equations can be written in the following abbreviated form

ql1 , rl

. 2 , r 2

y= $k' rk (x) -A(x) (14)

q,_ rn

th
The array of n intercepts and slopes, A, will be called an n order PWL

operator . A PWL operator can be thought of as a concise mathematical

representation of a PWL curve. A PWL operator contains the minimum amount

of information necessary to describe a PWL curve since two pieces of in-

formation are necessary to determine each line sepent. The only re-

strictions on the PWL curve are that it be defined for all values of the

independent variable and that all of the slopes be finite. The curve

may have negative slopes, may be multi-valued, or even may intersect it-

self.

Given a PWL curve or the equations which describe it, one can find

the corresponding PWL operator; or given a PWL operator, one can find the

corresponding PWL curve and the equations which describe it. To determine

the PWL operator which represents a given PWL curve, start with the left-

most linear section, follow the curve, and write down the intercept and

slope of each section in the order in which the sections are encountered.

For example, the curve of Fig. 5b is represented by the PWL operator

- 16 -



0,1

To reconstruct a PWL curve from a PWL operator, one possible procedure is:

1. Calculate the breakpoints by Eq. (3).
2. Calculate the value of y at each breakpoint by Eq. (2).

3. Plot these points and Join each successive pair of points by a line
sepent.

4. Draw a line with slope r1 starting at the left of b, and terminating
at b.1

5. Draw a line with slope rn starting at the right of bn.l and termin-
ating at bn. I .

The above procedure determines a unique PWL curve from a given PWL

operator. For example, if

B Bm OP-l" (6)

-2, 1/

the breakpoints are calculated by Eq. (3) as

b 1 = O, b2 = -4, b3 = 2, b 4 = 4

The values of y at the breakpoints are calculated by Eq. (2) as

Y Y2 = 4, y3 = -2, Y4 = 2

Capital letters will be used to designate PWL operators and small
letters will be used for variables and constants throughout this report.

Modified forms of PWL operators will be introduced later in order to
eliminate these restrictions.
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The resulting PWL curve (Fig. 12) can be described by the equations

y= 3 +x/2 x<0

y= 3-x/4  -4<x<0

y= -x -4<x<2

y -6 + 2x 2 < x< 4

y= -2 +x 4<x

y

6

4.

-4 -2 ON /2 6 8 x

-2

FIG. 12. SELF-INTERSECTING PWL CURVE.

When a PWL operator operates on a constant, the result may be a single

numerical value or a set of values, depending on whether the PWL curve

is single- or multi-valued at the point in question. For B defined by

Eq. (6), B(5) = 3, but B(-l) = 1, 5/2, or 13/4.

The use of PWL operators to represent curves that are defined for

a semi-infinite range of x requires a slight modification in the nota-

tion. A curve that is defined only for x < xa starts on the left and

ends on the left. A PWL operator in the previously defined form could

be used to represent the curve, except that the last section applies to

the range x < bn. instead of x > b To indicate this difference, a

bar is placed on the right bracket of the PWL operator opposite the last

intercept and slope. For example, Fig. 7f is represented by
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The convention will be established that, whenever a PWL curve both begins

and ends on the left, the lower of the two end sections will be listed

first in the PWL operator.

When a PWL curve is defined only for x > xa, it starts on the right

and ends on the right. To indicate that the first section applies to

the range x > bI instead of x < bl, a bar is placed on the right bracket

of the PWL operator opposite the first intercept and slope. For this

type of PWL curve, the lower of the two end sections will also be listed

first in the PWL operator. For example, Fig. 7d is represented by

v Mi

When working with PWL curves that are defined for all values of x,

it is sometimes convenient to list the sections in the PWL operator in

reverse order, starting on the right and ending on the left. In this

case, a bar is placed opposite both the first and last sections in the

PWL operator. Thus Eq. (5) could be rewritten as

0,. 1

8/3,, 1/3

-1, 1/2)

To indicate that a PWL curve is defined for only a finite range of x

and that the curve has a closed-loop form, a double parenthesis will be

placed on the right side of the corresponding PWL operator. For example,

Fig. 9d is represented by0

-1, 0
-1, 1 M
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C. AN ALTERNATE FORM OF NWL OPERATORS

When PWL operators are manipulated on a digital computer, an alter-

nate representation turns out to be convenient. Instead of specifying a

PWL operator in terms of intercepts and slopes, it is possible to work

with breakpoints. Listing the coordinates of the breakpoints in order

will determine all of the sections of a FWL curve except the two end sec-

tions. To determine these end sections, additional information must be

supplied. Specifying the slope of each end segaent would be adequate

but would lead to a INL operator composed of n-1 breakpoints and two

slopes. This unsymmetrical form would result in complications when de-

riving rules for algebraic operations with NWL operators. Instead of

specifying the slope of an end section, the coordinates of a point on

this section can be supplied. This procedure leads to the representation

of an n-section F4L curve by a PWL operator of the form

Xo, Yo"

A= k (7)

where (xk, yk) are the coordinates of the kth breakpoint (k- 1,2o... n-1),
brakoitrke

(x 0 , yo) are the coordinates of a point on the first section, and

(x, yn) are the coordinates of a point on the last section.

The points on the end sections may be chosen arbitrarily, although for

numerical work it is desirable to choose these points sufficiently far

from the nearest breakpoints so that the slopes of the end sections can

be determined accurately. Square brackets will be used to enclose the

breakpoint form of PWL operator, which is defined above, to distinguish

it from the slope-intercept form, which will be enclosed by parentheses.

The breakpoint form has the disadvantage of requiring n+l pairs of num-

bers to represent an n-section PWL curve compared with the slope-intercept

form, which requires only n pairs. However, with the breakpoint form, it

is unnecessary to use bars on the right bracket to indicate when a Nt

curve starts on the right or ends on the left. If x0 < x1 , the curve

20



starts on the left, and if x > xl, the curve starts on the right. If

xn. 1 < xn, the curve ends on the right, and if x. 1 > xcn the curve ends

on the left.

Conversion from one form of PWL operator to the other is easy. Start-

ing with the breakpoint form, Eq. (7), the slopes and intercepts for the

other form, Eq. (4), are given by

r Yk Yk-l (8)
r k - -i

'1k Yk - rkk) (9)

To convert the slope-intercept form to the breakpoint form, proceed as

follows:

1. Calculate the bk's by Eq. (3).
2. Choose x < b, ( > b, if the PWL curve starts on the right).

3. Set x. = bk (for k a 1,2,...,n-I).

4. Choose Xn > b. 1 ( < bni if the PWL curve ends on the left).

5. Set Yo = q + r1 x0 .

6. Set yk w qk + rkxk (for k - 1,2,,..,n).

Written in breakpoint form, Eqs. (5) and (6) become

"-, -" [-6, o-4,-3 {Ox 3

A- -3,-l and B -4. 4
1., 3j 2,-24.4 4. 26, 6 L 6, 41

These PWL operators can easily be written down by inspection of Figs. 5b

and 12.

If A operating on x yields a single value for every value of x, A

will be called a single-valued NWL operator. If A(x) represents a mono-

tonic function of x, A will be called a monotonic PNL operator. If A is

a single-valued NWL operator in breakpoint form,
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if x = x

Xo ] y (x y + (x - xj)rj if xJ. 1 < x < xi

A(x) =() Yo + (x -x 0 )r 1  if x < xo (10)kn- Yn
y + (x -xn)r n  if x > Xn

where rj = - Yj "l

x1 - xi -1

The various forms of PWL operators that have been defined are sum-

marized in Table 1. The type designation indicates whether the PWL

curves start at the left or right and whether they end at the left or

right, e.g., type IR starts at the left and ends at the right. It is

unnecessary to use bars on the brackets of the breakpoint form to dis-

tinguish the different types because there can never be any ambiguity

as to the directions of the end segments.

TABLE 1. TYPES OF PWL OPERATORS

PWL Operator Type Desigetion Form of Operator

and Form of Curve Slope-Intercept Brookpoint

L it 
: l rl%  

0o, Y
re) xmo Yt

(xo
< 

3 1 . .i < za)
LL Nr. 11 r Io' Y

I q*, r3 7  3*, Yo( re (x , _ l

-(xv 0 >: , t
r " !1., r >  01. % I •1

" r k ° ' ro Y a
(Z 0 " I'o -1 ' "n)

Closedq, rl r. Y
r - r5  a " , o 

- ,o,
orl al >x,
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D. RiE ATION OF SOUR"E AND DIODES BY PFL OPNRBATS

When a section of a PglL curve has infinite slope, there is no diffi-

culty representing the curve in ters of PWL operators in the breakpoint

form, but some trouble arises when we try to represent it in slope-

intercept form. We can get around this difficulty by assuming that the

slope is very large, but still finite, and later taking the limit as

the slope becomes infinite.

The v-i characteristic of an ideal current source has an infinite

slope as shown in Fig. 13. If the current source has a very large shunt

resistance L, then the characteristic intersects the v-awde at v - -i L.

In terms of NL operators, the voltage across the current source is

v - (-ioL,L) (i)

If we let L a., we can express the characteristic of the Ideal current

source symbolically as

v - (-io.,O) (0) (31)

Similarly, for an ideal voltage source of value e, we will write

SM lm (-eL,L) (v) - (-em,.) (v) (12)

V

I _

FIG. 13. V-1 CIAACTUISTIC Of IDAL CUR? IOiac.
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The voltage across the source is

v. a e + 01 (eO) (1) (13)

In terms of lWL operators, the v-i characteristic of a diode with

forward resistance 6 and reverse resistance L is

(0) Lv.- (oz (1)

By letting 6 * 0 and L - m, we can express the ideal diode character-

istic of Fig. 3 symbolically as

OP 0, ) (1) (14)

The series diode network of Fig. 14 and its dual, the parallel diode

network of Fig. 15, occur frequently as building blocks in resistive
diode networks. In terms of FWL operatorso the v-i characteristics of

these netvorks are respectively

V ~ i = ' L" t eL'= e

'i -e \ () f 00 (i)(16)

6-00 _igj, 9 it0o0

By considering the two states of the diode, the NWL operator that charac-

terizes a network of either type can be written down by inspection of the

network. When solving some types of PWL network problems, it is con-

venient to work in terms of 6 and L, and then let 6 . 0 and L s ter

the solution has been obtained.

. STIRN S 1UT FOB P ZUTATION OF PWL FUNCTIONS

Stern [Refs. 4.5] represents single-valued PWL functions in terms of

transformations e and %, which have the following properties:

(,x,...,,x) e. maxium value of x1 , x2, ..., and xn (17)

(xx 2 ,..., x) j". minimm value of x1 , x2 t, ... , a x (18)

Using these transformations, the PWL function of Fig. 5b is

V. a -1- + ../2, i., (5 + 21p + 1- 8/3 + JL/3 ) 0'1 0 (19)



I V

SSLOPE r

1+

FIG. 14. SERIES DIODE NETWORK AND V-I CHARACTERISTIC.

- . /I V

+ SLOPE - g

[0 ___

FIG. IS. PARALLEL DIODE NETWORK AND V-I CIIARACTERISTIC.

Any single-valued PNL function of x can be represented by a generaliza-

tion of one of the following forms:
+

y. ((..((x ,x2,...,Xla)0-,xlX2,..ox2b) ...)0',xl)x , ..., )

or (20)

y+.

where xii is a linear function of x. Since the transformations 0

and 0" yield a single value, multi-valued curves cannot be expressed in

this form. The form and complexity of a PWL function expressed in terms

of 0 and 0- generally depend on the shape of the NWL curve as well as

on the number of sections. For example, if we change the last section

in Fig. 5b from v = i to v - 2 + 1/2, Eq. (19) must be replaced by

* , J* (2+

v - (- 1  + i/2- (54 + 21, 2+ i) oj $ j.(/3 + /3, 24. 12 1 (21)
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Any WL curve which can be represented in Stern's notation can be
represented in terms of PWL operators, but not conversely. 0" transfor-

mations that contain two arguments can be converted to INL operators by

the following relations:

(xy)0" - 0, (x -y)+ym 0,0) (y-x)+x (22)11) \0, 1,

(x..y)j- (. 0) (X -y) + y -(.0 (y -X)+ X (23)

These relations can readily be verified by considering the two possible

cases, x >y and x <y. For example, if x >y, Eq. 22 becomes

x - 1.(X - y) + y - O.(y - x) + x

+

A 0" transformation that+contains more than two argumnts can first be

reduced to a series of 0" transformations, each of Vhich has only tvo

arguments, by using the relationship

(xlx2,x3,u.,Xn)0 - ((...((xl 2 )0x 3 )-,..)-,Xn)- (24)

Since it is possitle to represent multi-vLlued WL curves by PIL opera-

tors but not by 0" transformations, it is not always pgasible to convert

a FL operator to an equivalent expression involving 0- transforastions.

An algebraic method for analyzing NWL netvorks, based on Stern's

notation, is discussed in Appendix A. The relative advantages and dis-

advantages of Stern's methods and liL-operator methods are discussed in

Section X. B. A representation for PIL curves in terms of absolute

values is discussed in Appendix B.
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III. ALGEMAIC OPERATIONS WITH PWL OPERATORS

NWL operators have been defined to represent the characteristics of

PWL elements in a compact form. The next step in formulating a system-

atic analysis of PWL networks is to define algebraic operations with PWL

operators. Inversion, addition, multiplication, and other operations

will be defined for PWL operators in both slope-intercept and breakpoint

forms. The algebraic properties of these operations will be examined.

A. INVERSION OF PWL OPERATORS

Given the PWL operator which represents the v-i characteristic of a

PWL resistor, a method is needed for determining the PWL operator that

represents the corresponding i-v characteristic. In order to solve an

equation of the form y a A(x) for x, we will define the inverse af the
-1 -1PWL operator, A . so that x - A (y). Fig. 16 shows a PIL curve and

its inverse. Graphically, finding the inverse of a PWL curve amounts to

interchanging the x and y axes by reflecting the curve about a 450 line

drawn through the origin.

1. Inversion in Slope-Intercept Form

For a PIL curve that consists of a single section,

y - + rkx - (q krk) (x)

Solving this linear equation for x yields

rk rkrk k

In terms of INL operators,

To generalize this inversion procedure to an n th-order PWL opera-

tor, Eq. (25) is applied to each section. If
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ql, rl
A q2 ,r r 2

represents a NWL curve which starts in the third quadrant and ends in

the first quadrant, then

A 1  -q2 /r 2 , 1/r2  (26)

-q;/ r a, 1/r /
Since the intercept and slope of each section is correct and the sections

are listed in the correct order, Eq. (26) must be the correct representa-

tion of the inverse. For Fig. 16,

A-

y - A()

-10

FIG. 16. A PIL CURVE AND ITS INVERSE.
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( ~ 2 5 : 2 / 5 
/1 ,5 / 2

-5, 3 ) and A l = 5/3, 1/3

6, 1/4) -24, 4

If a INL curve starts or ends in the first or third quadrant, the

inverse curve starts or ends in the same quadrant as the original curve;

however, if the curve starts or ends in the second or fourth quadrant,

the inverse curve starts or ends in the opposite quadrant. When a PWL

curve starts or ends in the second or fourth quadrant, the initial or

final slope is negative, and the corresponding PWL operator has r I < 0

or rn < 0. In this case, the inverse is still formed as in Eq.(26), but

bars must be added to (or omitted from) the right bracket of the inverse

PWL operator according to the following rules:

If r1 < 0, add (or omit)* a bar opposite the first section.

If rn < 0, add (or omit)* a bar opposite the last section.

Examples of the application of these rules are

6, 2 -3,12/1 O, -2

0, 1/2 = 0, 2 O, 1/2 = ,2

1/2,-i/2 i, - -2, 2,1

1,12)- 1 2, -2 (-3/2, -3
-i, -1 1= -i, -1i, -1

-2,-113 -3/2, 32, -2

When NWL curves are classified according to the quadrants in

which the curves begin and end, there are 10 possible types (Fig. 17).

By reflecting these curves about a 45° line, it is seen that curves of

types (a), (b), (g), and (h) have inverses of the same type as the

original curve, but curves of types (c) and (d), (e) and (f), and (i)

and (J) are inverses of each other.

* Omit the bar from the inverse if the original PWL operator has a bar
in the corresponding position.
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(a) (b) (c) (d)

%, /

\- /

(I) Ci]

FIG. 17. INITIAL AND FINAL SEGMENTS FOR TEN TYPES OF PWL CURVES.

2. Inversion in Breakpoint Form

The inverse of a PWL operator in breakpoint form is easy to find.

Since finding the inverse of a INL curve amounts to interchanging the

x- and y-coordinates of every point, interchanging the x- and y-coordinates

of the breakpoints will give the coordinates of the breakpoints of the

inverse. Therefore,
-1

L ,yo Ly0.,x 0= (27)

For the curve of Fig. 16,

- 30 -



-9 -61 -6 , -9]

A1),- and A-1  -2, 1
_10.,8.5_1 80, O

The inverse of a PWL curve can always be found graphically by re-

flecting the curve about a 450 line. The inverse of a PWL operator in

breakpoint form can always be found by Eq. (27). The inverse of a PWL

operator in slope-intercept form can always be found by Eq. (26), pro-

vided that all of the slopes are non-zero. If any slope is zero, its

reciprocal is infinite, and a special method is needed to express the in-

verse in slope-intercept form. If a section has zero slope, we can re-

place 0 with e and take the limit as 6 > 0 after the inversion has been

carried out. Symbolically, we can write

(q'0)-1 =-,O (qe) = m L

B. ADDITION OF PWL OPERATORS

When two PWL resistors in series carry a current i, the voltage ac-

cross the combination is

v = v, + v2 = R, (i) + R2 (i)

where R1 and R2 are the PWL operators that represent the characteristics

of the two resistors. We will define addition of PWL operators so that

we can write

v = R1 (i) + R2 (i) = (Rl + R2) (i)

Addition will first be defined for single-valued PWL operators, and later

the definition will be extended to multi-valued operators. The sum of

two single-valued PWL operators is defined so that

A(x) + B(x) = (A + B) (x) (28)

for all values of x.

Graphical addition of PWL curves is illustrated in Fig. 18. Each

value of y on the sum curve is obtained by adding the values of y on

the curves being added which correspond to the same value of x.
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+ -y

/ -6
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PlO. 18. ADDITION 0? PUL CURVES.

Since a NWL curve is determined by its breakpoints, it is necessary only to

carry out the addition for values of x where either curve has a break-

point and for one point on each end sepent.

1. Addition in Slope-Intercept For

For the case where each N L curve has only a single section with

Y= aj+ rjx - (q3, rj) (x)

Y2=-' + rkx= (- k rk) (x)

the sim is

Y+ y2 = (qj + k) + (rj + rk) x (qj + qk rj + rk) (x)

In terms of PilL operators,

(qj, rj) + (% rk) = (qj + kr +r)()
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In words, Eq. (29) can be stated as the intercept of the sum is the sum

of the intercepts, and the slope of the sum is the sum of the slopes.

The sum of a first-order PWL operator and an n th-order PWL operator can

be found by applying Eq. (29) n times:

oqlrl q +q 1 ro+r 1

(qo r0) + arn)

To generalize the addition procedure to higher-order INL operators,

pairs of sections are selected according to the relative order of the

breakpoints, and each pair is added by Eq. (29). After a pair of sec-

tions has been added, the breakpoints that follow those sections are com-

pared, and the lesser breakpoint is selected. If the breakpoint of A
has been chosen, we move down to the next section of A, or if the break-

point of B has been chosen, we move down to the next section of B. For

Fig. 18,

A - i1, B = 2, 
A= 01,12)(1_24

2,1/2 -3,

/0,1/2 (1-1/ , 2 /11,5/2\ (30)A+B 4) + , - 4 2\2,1/2) -3, 1 3,3/4

4.,1/4
-l, 3/2/

To find the sum, the breakpoints of A and B are first calculated by

Eq. (3) and listed beside the PWL operators. The first sections of both

operators are added to get the first section of the sum. Since -4 < -2,

we move to the next section of B and add (0,J) and (2,) to get (2,k).

Next, since -2 < 4, we add the next section of A to the same section of

B, which gives (1,1) + (2,4) = (3,3/4). This process is continued un-

til finally we add the two last sections to get the last section of the

SUm.

Moving down the column in a single-valued PWL operator corresponds to
moving to the right along the corresponding PWL curve.
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The rule for addition of single-valued NWL operators in slope-

intercept form can be stated formally as follows. The sum of two PWL

operators

A = and B =r~

r q'rim \q2n' r2n

is a PWL operator of the form

C = A + B = (31)

where q 31 = qlj + q k and r31 = rlj + r 2 k with J and k deter-

mined as follows:

1. For i =, 3 = k a 1

2. If for i a i', j - J' and k = k', then for i a i' + 1,

J = ' + l, k - k' if bli , < b2k,

= J' + l, k a k' + 1 if blj, = b2k,

J V', k = k' + 1 if blj, > b2k,

3. For the last section (i = J), j m and k = n.

The breakpoints in the above rule are given by

=lj qql3 1  - q =L l,2,....,m-l), b m-b ,= rl j ' . r l" J ' + l

b q2k'+l - q2k' (k' = l,2,..,nl),
2k' r2k, - r2,k,+l 2n

When two successive sections of C have the same intercepts and the

same slopes, both sections represent the same straight line, and one of

the sections should be deleted since it is redundant. Note that m

does not have to equal n, and I will gnerally be greater than either

m or n.
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2. Addition in Breakpoint Form

Addition of single-valued PWL operators in breakpoint form can be

expressed by the equation

10' Y10 x20, Y20 x 30' Y30
Ci AL + ] =

XJMV Y lm LX2n ' Y2n LX31Y Y31

The x-colunn of C is formed as follows: (32)

1. x30 n minimum of xlO and x20

2. To obtain x 3 1 ,...x 3 .1 arrange Xll ... ,Xlm.l and 21... x2,,l

in increasing order.

3. x3, = maximum of xlm and X2n"

The entries in the y-column of C are

y31 = A(x3 i) + B(x 31) (32a)

where A(x 3i) and B(x 3 i) are evaluated by interpolation between the break-

points using Eq. (10). For Fig. 18, 6
-4 ,2 -6,-1 2 ~

A+B -2-i -. , 31.. -2,3/2
2, 3 4P 1 2,9/2

, 4 6,3 4,56., 8

For convenience in interpolation. the slopes of the sections can be list-

ed beside A and B as shown above. A typical calculation for determina-

tion ofy 31 is

Y32 " A(-2) + B(-2) - -1 + 3 + [-2-(-4)1(-J) - 3/2

During the addition process, redundant breakpoints may be intro-

duced. If

(xJ+l - xj~l) (yj - =i-l
) - (xj -xjl) (yj+l - j_-i)  (33)

the point (XJ YJ) lies on the line Joining (xj_.yjl) and (xj+lyj+l)

and therefore may be deleted.
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C. MULTIPLICATION OF PWL OPERATORS

Inversion and addition of PNL operators have been defined, and now a

multiplication operation will be introduced. Consider two PWL networks

connected in cascade (Fig. 19), and assume that the loading effect of the

second network on the first is negligible. If the transfer characteris-

tics of the networks are represented by NL operators with v2 = B(vl) and

= A(v 2), we would like to define multiplication of PWL operators so

that we can substitute B(vl) for v2 and write v3 a AB(Vl). Then the

product AB would represent the overall transfer characteristic of the two

networks in cascade. In general, multiplication of PWL operators will be

defined so that if z = A(y) and y - B(x), then z - AB(x). Note that this

is not ordinary multiplication, but is a substitution type of operation.

Graphical multiplication of PWL curves is illustrated in Fig. 20.

Starting with plots of z vs y and y vs x, the object of the multiplica-

tion process is to eliminate y and obtain a plot of z vs x. When forming

the product AB, B-1 is plotted below A so that the camon variable, y,

can be measured on the same horizontal scale for both curves. Since x is

measured on a vertical scale for B-1 and on a horizontal scale for AB,

the two scales for x can be related by reflection in a 450 line. For a

given value of y, the corresponding values of z and x can be determined

graphically and plotted on the product curve. The graphical construction

required to do this is shown for typical points. Each point on the AB

curve is determined as the intersection of two dashed lines. Since the

breakpoints determine the PWL curve, this procedure need be carried out

only at the breakpoints and at one point on each end segent.

+ PWL +PWL +

I NETWORK va a 1(v) NETWORK v3 - A(v2) - Ai(vl)
0-- .I---

FIG. 19. CASCADE CONNECTION OF PWL, NETWORKS.
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FIG. 20. GRAPHICAL MULTIPLICATION OF PWL CURVES.
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1. Multiplication in Slope-Intercept Form

The product of two NWL operators, AB, will first be defined for

the case where A and B-1 are single-valued, and later the definition will

be extended to the multi-valued case. For the case where each PWL opera-

tor has only a single section with

z = qj + rjy = (qjrj) (y)

y = qk + rkx = k) (x)

substituting the second equation into the first yields

z = (qj + rjqk) + (rjrk)x = (qj + rjqk, rjrk) (x) = (qjrj) (qk,rk) (x)

In terms of NWL operators,

(qj,rj) (qk,rk) = (q j + rjqk, rJrk) (34)

th
To multiply a first order PWL operator by an n order operator,

Eq. (34) is applied n times.
/q 1 V r l  I + rOq l , r rl (

(%1o (35)
(qo, r .0

j, rqn  + ro, rorn

The product of an nth-order PWL operator times a first-order operator is

obtained in a similar manner.

r(qo ro) q (36)

q., rn qn + rn ' rn ro

It may be necessary to add bars to the right bracket of the product if
r, rl, or rn is negative.

The multiplication procedure can be generalized to higher-order

PWL operators in a manner similar to the addition procedure. Pairs of
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sections are selected according to the relative order of the breakpoints,

° and each pair is multiplied by using Eq. (34). From the graphical con-

struction, it is clear that we must compare breakpoints of A and B-1

instead of A and B as was done in the addition procedure. The break-

points of B" , i.e., the y-coordinates of the breakpoints of B, can be

found by the relation

ck = qk +rkbk -k +rk _ j__ kk+1 rkrrk r +r ] rk+l rk

For Fig. 20,

A= 3 2) B= ,(Z1
\2, 1/ 3/2,1/2)

/ -3,1/2

-.144,. 2 Ul, 4
AB y2 4 - 1, 1 - 5, 2

\ 7/2.,1/2/
To find the product, the b k's are calculated by Eq. (3) and listed be-

side A, and the ck's are calculated by Eq. (37) and listed on the left

of B. To get the first section of the product, the first sections of A

and B are multiplied using Eq. (34). Since -4 < -2, we move to the

next section of A and multiply (3,2) by (4,2) to get (11,4). Next,

since -2 < -1, we multiply the same section of A by the next section of

B to get (3,2) (1,1) = (5,2). This process is continued until finally
we multiply the last sections of A and B to get the last section of AB.

The rule for multiplying a single-valued PWL operator by a PWL

operator whose inverse is single-valued can now be stated. The product

is given by
C - AB . ( r (rq

2
,r 2 1  q 31'r31

c=AD= =(38)
\qm,rlm q2nr2n) \q31,r3A)

where q31 = lJ + rljq2k and r3i = rljr2 k'
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with j and k determined in the same manner as for the addition rule,

Eq. (31), except that b 2k is replaced by

Sq2k'r- k '+l " q2 ,
k '+ Ir2

k '  (k' = 1,2,...,n-l), c = G
k' r2 ,k,+l - r2k, n

If B has a bar on the right bracket, C will have a bar in the correspond-

ing position. For example,

0',- 20, -5
\o,. 5) 0, -5 0o,-2.5

If B starts in the second quadrant and ends in the fourth, before carry-

ing out the multiplication, the sections of B in Eq. (38) must be listed

in reverse order so that the ck's will increase with k. For example,

0~-1 101/2 4-/( 0 1 0(l )2 . ( 0, 1 -2 0-1-1/ ( 0,-i \p1/0o,1/ o ,-i o It o, - ' o,-i/2 o-
1/2/ 0,1/2 2 0,-i/ O._-1,V2\ 1-V /2,-1/4 - -1/2

2. Multiplication in Breakpoint Form

If A and B-1 are single-valued INL operators in breakpoint form,

we can list the rows of A and B in an order such that the first column

of A and the second column of B both increase as we move down the column.

The product AB can then be expressed in the form

0xi, Y10  20', Y20  rx30" y 30

c - AB I (39)
x~m, Y1m 2n~ 2n "35 '3

To find C, an auxiliary Z-column is first constructed as follows:

1. z = minimum of x10 and y20.

2. To obtain z2 , z3 , ... , Z,.l, arrange x x , ... , xl, 1 - and
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y2 1 J Y22) """' Y2,n-1 in increasing order.

3. z- maximum of xlm and Xn"

Then to form C,

3- B 1 (zi) and y3 1 - A(zi) (i 0- ,,2,...,A) (39a)

are evaluated by interpolation between the breakpoints using Eq. (34).

For the example of Fig. 20,[] [i B -3o-2 B- -23
-1, 1 1,22.1

2, L 33 L 3 ,

-8
-'4 -'4,-,

-2 -3,-I
Z- -1 and C. -2,1

2 1, 4

3 3,

A typical calculation for determining one of the rows of C is

x32 - A (-2) - -5 +[-2 - (-4)]2 --1

Extension of the multiplication procedure to muti-vaied FiL Werators

will be considered in Section III. J.

D. OPI ATIONS WITH CONSTANTS

In the solution of networks that contain both linear and FiL elements,

it is frequently necessary to add a PL operator to a constant or to Wmu-

tiply a PIL operator by a constant. In such cases, we will usumll write.
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a + A, As, and Aa as abbreviations for (0,a) + A, (Oa)A, and A(Oa)

respectively. When the PYL operator is in slope-intercept form, the fol-

lowing rules are special cases of Bqs. (29a), (35), and~ (36):

!1, 1, q1,9r~

a = (40)

a () (, n)!l, 1a 7 1,&rl

aa<

When the PYL operator is in bweekoint form, these rules becom

, I ( a

a . (42)

LY00 Y" YO " 0a +Oft
-., x.. P Y,/, + ax

n nn.



E. THE DENTITY OPERATOR

The NWL operator, (0,1), will be called the identity operator and given
the special symbol I. The identity operator operating on anything gives

back the same thing,

I(X) - (0,1) (X) - 0+ x -x

For every PWL operator, A,

AIlnIA aA (4&3)

since for every section

(q kprk) (0,1) - (0,1) (qr - (qjr.)

* If y - A(x) is defined for all values of x,

x -1 (y) - AA(x) -I(x), soA A aI

If x = A-1 (y) is defined for all values of y.

y -A(x) - M- (y) -I(y),soAA1 - I

It follows that if y=A(x)Is defined for all values of xand x -1 (y)
is defined for all values of y. then

IA a -A A-I1 (44)

This equation is easily verified for a first-order PWL operator,

AA (qj rk) (-qk/rk, 1/rk) (qk - qk r/r k) (0,1) 1

A' -qkr. 1/lrk) (q. rk) -(Vrk + qk/rk, rk/rk) -(0,1) . I

For n th-order NWL operators, the urn result is obtained f .or every sec-

tion so that the product of an operator and its inverse reduces to the

identity. - 43 -



F. UGATION AND SUB1MACTION

The negative of a PUL operator will be defined so that if y - A(x).
then -y - (-A) (x). The negative of a PWL curve is found graphically by

interchanging y and -y by reflecting the curve about the x-axis. This
reflection is equivalent to changing the sig1 of every slope and inter-

cept. Therefore, if

A - then -A - (O,-1)A- (15)
q n , r . -qn , -"rn

or, in breakpoint notation if

A . :then -Aa (.6)

Subtraction of PWL operators is then defined by

A -B - A + (-B) (1.7)

i.e., to subtract B from A. add the negative of B to A.

It is useful to define a second type of negation with A(-x) - X(x).

Graphically, this operation is performed by interchanging x and -x by

reflecting the PWL curve about the y-axis. Since -x - (O,-l)(x),

A(-x) -A(O,-1)(x) m A(x), so -A(O ,-1). If

A- then r - ! (18)
an , r n  q,-r n ql,-r /

or, in breakpoint notation, if

A. | then ( (19)

Ins Ln -o' Y



The reordering of the sections is performed so that the sections will be

listed in the customary order, i.e., from left to right.

Two useful relations which involve the two types of negation are

A(-B) = A(O,-1) B --AB (50)

and = [A(O,-l)]- = (0,-l)A-I = -(A-') (50a)

G. ASSOCIATIVE, COMUTATIVE, AND DISTRIBUTIVE LAWS

Both the associative and commutative laws are valid for addition of

PWL operators. Since

[A(x) + B(x)] + C(x) - A(x) + [B(x) + 0(x)] for all x,

it follows that

(A + B) + C = A + (B + C) (associative law), (51)

and since

A(x) + B(x) - B(x) + A(x) for all x,

it follows that

A + B = B + A (commutative law). (52)

For multiplication of PWL operators, the associative law is valid,

but the commutative law is not. Since

A (B[C(x)i} - A[BC(x)] = AB[C(x)] for all x.

it follows that

A(BC) = (AB)C (associative law). (53)

- 45 -



The associative law can be verified directly for first-order PWL opera-

tors. If A = (a l,a2 ), B = (b 1 ,b 2 ), and C = (Cl, C2) ,

A(BC) = (a ,a2 ) (bI + 2 cl,b2c2 ) = (a1 + ab I + a2b2cl, a2b2c2 )

and (AB)C = (a1 + a2b1, a2b2 ) (clc 2 ) = (al + a2b1 + a2b2c1, a2b2c2 )

The commutative law does not hold in general for multiplication. Even

for first-order PWL operators,

AB - (a1 , a2 ) (b1 , b2 ) - (a1 + a2bl, a2b2 )

but BA = (b1, b2 ) (al, a2 ) = (bI + b2a,, a2b2 )

and ABJ BA.

The right distributive law is valid for PWL operators, but the left

distributive law is not valid, i.e.,

(A + B)C AC + BC (54)

but A(B + C) AB + AC (55)

except in special cases. The validity of Eq. (54) follows from the way

in which addition is defined. From the definition of addition,

(A + B) (y) - A(y) + B(y)

Now, substituting C(x) for y,

(A + B)C(x) = AC(x) + BC(x) = (AC + BC) (x)

from which Eq. (54) follows. On the other hand, unless A is linear,

A(y1 + Y2 ) # A(yl) + A(Y2 )
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If y= B(x) and y2 C(),

A[B(x) + C(x)] AB(X) + AC(x)

and A(B+ C) (x) (A + AC) (x)

which shows that the left distributive law is generally not true.

The right distributive law can be verified directly for first-order

PWL operators. If A = (a,, a2), B = (bl, b2 ), and C = (c 1 , c2) ,

(A + B)C = (al+bl, a2+b2 ) (cl,c 2 ) = (al+bl+a2C1 +b2cl, a2c2+b2c2 ) and

AC + BC = (al+a2 c1 , a2 c2 ) + (b1 +b2 cl, b2 c2 ) = (al 1+b+a 2C1 +b2cl, a2c2+b2c2)

The left distributi±e law is generally not true even for first-order

PWL operators:

A(B + C) - (al,a2 ) (bl+cl,b2 +C2 ) . (al+a2 b1 +a2 cl, a 2b 2 +a2c2 ) but

AB + AC - (al+a2bi,a2 b2 ) + (al+a2cl,a2c2 ) - (2al+a2bl+a2c2 ,a 2 b2 +a2 c2 )

The only case in which the left distributive law holds is when A is a

constant. If A = (0,a),

(Q,a) (B + C) - (O,a)B + (O,a)C

(56)
or a(B + C) = aB + aC

This relation must be true, since premultiplying by a constant merely

changes the vertical scale on the PWL curves.

A special left distributive law can be derived when A is of first-

order. If A = (al,a2 ), then

A(B + C) = (al,O) (B + C) + (O,a2 ) (B + C)

= (al, a2 )B + (Oa 2 )C = AB + (Oa 2 )C (57)
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H. SHIFTING OF NWL OPERATORS

Given an expression of the form y = A(x + b) where b is a constant,

we would like to find a new PWL operator, Ab, such that y = Ab(x). The

PWL curve that Ab represents can be obtained by shifting the PWL curve

for A a distance of b units to the left along the x-axis. For the kth

section of A,

y = (qk' rk) (x + b) = qk + rkb + rkx = (q + rkb, rk ) (x) (58)

The shifting rule for an n th-order PWL operator is, therefore,

(7' ( b q (l+rlb '
A~x + b) -- (x + b) =(x) -- A(X (59)

iqn rn bqn+r, rn

The kt h breakpoint of Ab is

(qk+rkb) - (qk+l + rk+lb) qk - k+l _ b = b - b (60)
rk+l - rk rk+l - rk

where bk is the kt h breakpoint of A, which indicates that all of the

breakpoints have been shifted b units to the left.

The shifting rule can be applied even if b is a variable instead of

a constant, but in this case the breakpoints of Ab are variable. Since

addition or multiplication of PWL operators can be carried out only if

the relative values of the breakpoints are known, it is usually not help-

ful to apply the shifting rule unless b is a known constant.

I. ADDITION OF MULTI-VALUED PWL OPERATORS

Addition of single-valued FNL operators has been previously defined.

We now wish to extend the definition of addition to include multi-valued

curves. First, the addition rule will be extended to the sum of a multi-

valued and a single-valued PWL operator, and then finally to the sum of

two multi-valued operators. In carrying out this extension, we want to
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make sure that the sum of two WL operators which represent the charac-

teristics of PWL resistors correctly represents the characteristic of

the two resistors in series.

Some of the procedures that will be developed for addition and

multiplication of multi-valued PWL operators are fairly complicated to

carry out by hand; however, these procedures have been programed for a

digital computer (see Chapter IX) so that multi-valued operators are as

easy to work with as single-valued operators when the computer is used.

For shorter problems where a computer is not worthwhile, rather than

learning the more complicated rules, it is often helpful to sketch the

curves as an aid in selecting sections to be added or multiplied.

Fig. 21 illustrates the addition of a multi-valued PWL curve to a

single-valued PWL curve. For a given value of x, the values of y on the

sum curve are obtained by adding each value of yI to the corresponding

value of Y2 " In order to determine the sum curve, it is necessary to

carry out this addition for values of x where either curve has a break-

point, and for one point on each end seipent. To determine the correct

order of the breakpoints on the sum curve, trace out the multi-valued

curve starting at the left and simultaneously follow along the single-

12

8 y (+3)(-)

-e -t -% o -2

FIG. 21. ADDITION OF A MULTI-VALUED AND A SINGLE-VALUED PIL CURVE.



valued curve at the same values of x. The single-valued curve will be

retraced opposite the part of the other curve that is multi-valued, so

that some breakpoints may be encountered more than once.

A breakpoint at which a multi-valued curve doubles back will be re-

ferred to as a corner point. After the breakpoints of a PWL operator in

slope-intercept form have been calculated, the corner points are easy to

identify. The breakpoint bk, is a corner point if

bk 1 < bk and b k > bk+1

or if

bk-1 >b k and b k <bk+1

When the addition of a multi-valued and a single-valued PWL curve is

carried out in terms of PWL operators, the procedu-e is similar to that

of the single-valued case except when a corner point is encountered. The

addition process for single-valued operators starts with the first sec-
,

tion of each operator and works down the column in both operators until

the last sections of both are reached. When adding a multi-valued opera-

tor A to a single-valued operator B the direction of travel in A is al-

ways down the column, but the direction of travel in B is reversed every

time a corner point of A is encountered. Moving upward in B corresponds

to moving to the left on the NWL curve. Moving to the left as the ad-

dition progresses will be referred to as the reverse mode since the

normal mode is moving to the right.

A more general procedure for addition of PWL operators in slope-

intercept form can now be stated. Starting with the first sections of

both operators,

1. Add two sections: (qj,rj) + (q krk) = (qj + qkP rj rk)

2. Compare the breakpoints that follow those sections (when moving

downward, bk follows the kth section. but when moving upward, bkl

follows the kt h section).

3. Choose the smaller breakpoint when in the normal mode, or the

larger breakpoint when in the reverse mode (if breakpoints are equal,

choose both).

Moving up and down the column in the PWL operator should not be confused
with moving up and down on its graph.
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4. Move to the next section of the operator in which the breakpoint

was chosen.

5. If the chosen breakpoint is a corner point, reverse the direction

of travel in the other operator and change the mode of addition.

6. Go back to 1. and repeat the whole process until the last sections

of both operators are reached.

For the example of Fig. 21, this process gives

1.5, .5/2.5" .25 2 4( 25 1.5, 1

A + B = (: :, ) -2" + 4, .75 = 4,-.2
2.5, .25 ) 7, 0/ ) ,-.75

16.5., 
..5

6.5, 1

'9.5, .25

The corner points of A have been starred. The details of the addition

are given in the following table. The direction of travel is .indicated

by D for down and U for up, and the mode of addition is indicated by N

for normal and R for reverse. The breakpoints that were chosen are

marked with arrows. The table can probably be best understood by fol-

lowing the PWL curves in Fig. 21 while it is being read.

Breakpoints to be

Sections to be Added Direction of Travel Mode Compared

A B A B A B

1 1 D D N 2 0 -

1 2 D D N 2-- 4
2 2 D U R -2 0--
2 1 D U R --

3 1 D D N --

3 2 D D N --

3 3 D D N --

If the multi-valued operator that is being added to the single-valued

operator is not defined for the entire range of the independent variable,

the same procedure can be applied. For Fig. 22a, we have
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1, 1/2

A + B= O,3 21 2 ,

When the multi-valued operator starts at the right, as in Fig. 22b, the

addition process is started in the reverse mode, first adding the last

section of B to the first section of A, and then moving upward in B un-

til a corner point of A is reached. For Fig. 22b, we obtain

/3) -1
(o, 2I * (1, 0\ (2,-l/2

~\~ 12) 2P l2J 2, 1/
33, 2 (3, 1/2/

Addition of two multi-valued curves is illustrated in Fig. 23.

Selection of sections to be added is carried out by starting at the left

and simultaneously tracing the two curves at the same values of i.

Whenever curve A doubles back, curve B is retraced, and whenever curve

B doubles back, curve A is retraced. If curves A and B represent the

characteristics of PWL elements, the sum curve can be used to predict

the behavior of the two elements connected in series. For example, if

the initial state of the series network corresponds to point a on the

(A+

\ Ai,) M

FIG. 22. ADDITION OF A CURVE DEFINED FOR A SEMI-IMFIMI*E
RANGE OF X TO A SINGLE-VALUEDO CURVE.
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sum curve, and we drive the network with a current source, the path

a-b-b'-d-d'-j will be followed as the current is continuously increased.

Similarly, if we drive with a voltage source, the path a-b-c-d-e-e' -h-i-J

will be followed as the voltage is continuously increased.

Addition of two multi-valued operators is similar to addition of a

multi-valued and a single-valued operator except that both A and B can

have corner points, so that it may be necessary to change the direction

of travel in both A and B. The rules for changing directions and modes

of addition are:

1. When a corner point of A is encountered, change directions in B and
change modes.

2. When a corner point of B is encountered, change directions in A and
change modes.

3. When corner points of both A and B are encountered simultaneously,
change modes, but do not change directions.

For Fig. 23,
l, 1/2

5, 0

3, 1/2

A + B / 9,-1/2 + 5,-1I4 6" 114,-3/4

9, 1/4 k3, 1/4) lo,-1/4

10, 1/2

14, 0

12, 1/2

The details of this addition are given in the following table. This ex-

ample is rather complicated because every breakpoint is a corner point

and a mode change is needed at every step.

The exact nature of the dashed transitions depends on the parasjtic
elements that are present in the network. It will be assumed that a
NWL network will remain in its present state, i.e., continue to operate
on the same line segment of its characteristic, unless the terminal
conditions cannot be satisfied on this line sepent. In this case, the
network state will change to the nearest line sepent on which the new
terminal conditions can be satisfied.
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Breakpoints to be
Sections to be Added Direction of Travel Mode Compared

A B A B A B

D D N 12 8-
1 2 U D R 44-

1 3 D D N 12--
2 3 D U R 04-
2 2 U U N 12
2 1 D U R 04- --
3 1 D D N --
3 2 U D R 0 4.-
3 3 D D N

Fig. 24 shows another example of addition of two multi-valued curves.

In terms of PWL operators,

-5, 1/2_.,1/ 0 ,,1//4-501/
A + B = (2,-1/2) + (, 12 4 1, 1/2

6s, i/

In this case, the sum curve has only five sections, compared with nine

in the previous example. If, instead of starting the addition process

at the lower left on both curves, we start with the bottom section of

A and the top section of B, we obtain the closed-loop characteristic

shown with dashed lines. The solid curve correctly represents the v-i

characteristic of the series connection of the INL elements represented

by A and B. The states of the network represented by the dashed curve

may be thought of as transient states. If we start with the network

operating at a point on the dashed curve and apply a voltage or current

outside the range of the dashed curve, the operating point must shift

to the solid curve. Once we are operating on the solid curve, the opera-

ting point will remain there no matter how we vary the terminal voltage

or current. The only way to get back to an operating point on the

dashed curve would be to go into the network and change the voltage

across one of the series elements directly.

The addition procedure for multi-valued operators works satisfactori-

ly if one of the PWL curves is undefined for a semi-infinite range of

the independent variable; however, difficulties arise if both curves are

of this type. If both multi-valued curves are defined for a semi-infinite
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FIG. 24. ADDITION OF MULTI-VALUED PWL CURVES.



range of the independent variable, and the ranges of definition are not

the same, we will say that the corresponding NWL operators are incompati-

ble for addition. If we add the curves graphically, the sum curve may

have two separate branches (Fig. 10) or may form a closed loop (Fig. 8).

Even in the case where the range of definition is the same, the sum curve

may have two possible values (Fig. 25). The solid curve in Fig. 25b is

obtained by adding A and B in the usual manner,

A+B (0, 1/2 + 0),1/4 ) (0, 3/4\
A + B = 10,-314 + 10,-i = -1

By listing the sections of B in the reverse order, we obtain the dashed

curve

A + B' = 1 1/2 + =0,140,_/
A+B = 0.-3/4* 0, 1/4) = 0., 1/2

Because of this possible ambiguity, we must be careful when carrying out

addition of two PWL operators that are both undefined for some range of

the independent variable. If this type of addition is required during

the solution of an actual network problem, it is probably because we are

working with an over-idealized model. We then have several alternate

courses of action: (1) start over again using a less idealized model;

(2) if the addition occurs as one of the last steps in the problem, carry

it out graphically and try to interpret the result in terms of the model;

or (3) carry out the addition in terms of PWL operators with the risk

that the final solution may be incomplete or in error. In this case, the

solution should be checked by substitution back in the original network

equations. When we write an equation in terms of PWL operators, we will

do so with the implicit understanding that the equation is valid only if

all of the indicated algebraic operations can be carried out unambiguously.

Methods have been presented for addition of multi-valued NWL opera-

tors in slope-intercept form. Analagous methods have been developed for

the breakpoint form.

J. MULTIPLICATION OF MULTI-VALUED NWL OPERATORS

The multiplication process can be generalized to handle multi-valued

- 57 -



A Y (A + ) 

L (A + 1) .

(b)

FIG. 25. ADDITION OF PWL CURVES UNDEFINED FOR x > 0.

PWL operators in the same manner that the addition process was general-

ized. The rules for selection of sections to be multiplied are com-

pletely analogous to the rules for selection of sections to be added,

except that one works with the breakpoints of A and B-1 instead of with

the breakpoints of A and B.

The transfer characteristic of the cascade lattice network of Fig.

26a will be derived to illustrate multiplication of a single-valued PWL

operator by a PUL operator whose inverse is multi-valued. We will

assume that r 2  r 1 and that loading of the first lattice by the second

can be neglected. By considering the two possible states of each diode,

the transfer characteristics of the two cascaded networks are easily

seen to be

v (, = o, 2 (v3 ) and v3 = v2  E (I., 2 (vl

0., 1/2~ 3 3E El 2 E -1/2-E/2, -1/4 (

0, 1/21 -E, 1/2 E/2, -1/4 )v1
-E/2, 1/4 /

This multiplication is carried out graphically in Fig. 26b.

The following example illustrates multiplication of a multi-valued

PWL operator by one whose inverse is multi-valued.
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2, 2

2 1  
-2 -2

-.1 2 2.. 1, , 1
(3,1/2

Following the rules for selection of 
sections, the sections have been
ast ist,  nd ist,  rd ist,

multiplied in the following order: 
1 x 1 , 2 x 1 , 3 x 1

3rd x 2rid  and 3rd x 3rd.

+E-

+++
r r2 r

r1  I 2FIG. 26a. CASCADE LATTICE NETWORK.

0 v3 -- 2E 4v
I It / II

-E "\ o I 2 v 3

FIG. 26. DETERMINATION OP TRANSFER CHARACTERISTIC BY

GRAPHICAL MULTIPLICATION.

- 59 -



The product AB may be indeterminate if a section of A that has an

infinite slope must be multiplied by a section of B that has a zero

slope. Thus, the following product is indeterminate

3/2,1/2 0)

This product is still indeterminate if graphical multiplication is used

(Fig. 27). Sinceany point on the vertical section of A might be asso-

ciated with any point on the vertical slope of B- , the product curve

might take any path through the shaded indeterminate region. This diffi-

culty can be resolved by assuming finite, non-zero slopes for A and B,

and taking limits after the multiplication has been carried out.

Multiplication of PWL operators in breakpoint form has also been ex-

tended to the multi-valued case. The procedures for addition and multi-

plication of multi-valued INL operators in breakpoint form have been

adapted for computer use and are discussed in more detail in Section

IX. C. 3.

A Al

I NDETERMINATE
REG ION

/ IB-I

FIG. 27. INDETERMINATE CASE FOR PWL OPERATOR MULTIPLICATION.

- 60 -



K. SOLUTION OF PWL OPERATOR EQUATIONS

The algebra of PWL operators is similar to ordinary matrix algebra

in that addition is associative and commutative, and multiplication is

associative but not commutative. However, there is one important dif-

ference--the distributive law holds from both sides for matrices, but it

holds only from the right for PWL operators. Some of the same techniques

that are used for solving matrix equations can be used for solving INL-

operator equations, but the fact that the distributive law does not hold

from the left makes it difficult or impossible to solve certain PWL-

operator equations.

The inverse of the product of two PWL operators is the product of

the inverses taken in reverse order Just as is true for matrices. If

we replace A by AB in Eq. (44), we obtain

(AB) (AB) "l - I

Premultiplying both sides by A"I and then by B-1 yields

(AB) l - B'1 A l  (61)

As an example of the solution of a PWL operator equation, consider

the following equation which is to be solved for X:

A(X + B) = X + C (62)

Subtracting (X + B) from both sides yields

A(X + B) - (X + B) - C - B

We now apply the right distributive law to factor out (X + B),

(A - I) (X + B) - C - B

Premultiplying both sides by (A - I) " I and subtracting B yields

X - (A - I) "l (C - B) - B
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Further examples of techniques for the solution of PWL-operator equations

are given in Chapters IV and V.
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IV. SOLUTION OF A(X + I) - BX + C

As will be seen in the next chapter, equations that can be reduced

to the form

A(X + I) =BX + c (63)

occur frequently in the solution of resistive networks that contain

three or more PWL resistors. Because of the importance of this equation,

considerable time and effort was devoted to its solution. If the left

distributive law were valid for PWL operators, it would be easy to solve

Eq. (63) in terms of the basic operations that were defined in Chapter

III. From the similarity of this equation and Eq. (62), it appears that

solution might be possible by some clever change of variables or rear-

rangement of terms. Unfortunately, all attempts to solve Eq. (63) in

terms of the basic operations have failed; therefore, it was necessary

to devise special methods for its solution. This equation has been

solved by graphical methods, by an iterative procedure, and by splitting

one of the PWL operators into sections.

A. EQUIVALENT FORM OF THE BASIC EQUATION

Eq. (63) can be written in a number of equivalent forms. Post-

multiplying both sides of Eq. (63) by X I , we obtain

A(I + X 1 ) = B + CX"I  (64)

If we could solve this equation for X-1, we could solve the original

equation for X. Substituting Y =-(X + I) into Eq. (63), we obtain

A(-Y) = B(-Y-I) + C

Using Eq. (50), this becomes

F(Y + I) = (y) -c (65)

which is of the same form as the original equation. Various changes of
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variable can be made in an attempt to find an equivalent equation that

is easier to solve. Unfortunately, such attempts often result in an

equation which reduces to the original form. For example, if we substi-

tute B 1YC for X and then postmultiply both sides of the equation by C"1,

we obtain

A(B'IY + C-1 ) = Y + I

or A-1 (Y + I) = B'Y + C-1  (66)

If we let both sides of Eq. (63) operate on the variable i1 and then

let X(i 1 ) = i 2 , we obtain

A(i2 + i1 ) B(i2 ) + C(i1 ) (67)

Solving this equation for the relation between i2 and i1 is equivalent

to solving the original equation for the unknown PWL operator X.

B. SOLUTIONS FOR FIRST-ORDER PWL OPERATORS

Eq. (63) is easy to solve when any one of the three PWL operators,
A, B., or C, is of first order because it is then possible to use the

left distributive law.

If A - (al, a2 ),

A(X + I) AX+a 2 BX+C

and

X - (A - B) "I (C - a2 ) (68)

If B = (bl, b 2 ),

A(X + I) = B(X + I) + C - b2

and

X = (A - B)"I (C - b2) - I (69)
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If C = (Cc, c2 ), from Eq. (64) we obtain

A(X l + I)= C(xl + I) + B - c2

X'1 = (A - C) "l (B - c2 ) - I

and

X [(A - C)"l (B - c 2 ) -Il (70)

If all three operators are first order, Eq. (63) becomes

(a,, a2 ) (X + I) = (bl, b2 ) X + (c 1 , c2 )

from which

X =( e l +b I al  c2 " a2(
a2 -b2 ' a772(71)

C. GRAPHICAL SOLUTIONS

Equation (67) can be solved graphically to obtain the relation be-

tween i and i For a fixed value of il, we can rewrite Eq. (67) in

the form

A(iI + i2 ) = B((il + i2 ) ill] + C(il) = B,(i 1 + i 2 )

where B' depends on i1 . The B' curve is obtained by shifting B an

amount i. to the right and an amount C(il) upward. The intersection of

A(iI + 1 2) and B'(i I + 12) determines the value of i. + 12 that corre-

sponds to the given value of i. as shown in Fig. 28. If i is allowed
to vary continuously, this corresponds to shifting the origin of B

along the C curve. This shift can best be accomplished by plotting B

on a transparent overlay, which is placed over a plot of A and C. The

value of i1 is equal to the amouAV that the origin of the B curve has

been shifted to the right, and the corresponding value of i2 is equal

to the horizontal distance between the shifted origin and the inter-

section of A and B'. In order to determine completely the X curve that

relates i2 to il it is necessary only to read off the values of i2 and

i. at the breakpoints and at one point on each end segment. X has a
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I, A

C(I1) __IFTIO I VE
I I/ i ,

niG. a. Dh!mINAIa'I oF A OmT a =U APncaE sumImm.

breakpoint whenever the origin of the shifted B curve lies over a break-

point of C or whenever a breakpint of A or B' lies at the intersection

of A and B'. Fig. 29 illustrates this process for the equation

SISF-3.. 7/1
3p (i 2 +i1 ) 2 ,i) * , J (i)V, 2 LL 3 2 j

L 4. O
or equivalently,

( 1/3) (X + x) - 1) X + (L ..- (72)

0,,

To get a "feel" for the process, It Is sugssted that the reader plot B

on a transparent overlay, slide it along C. and note where it intersects

A. The positions of B that determine the breakpoints of I are Indicated

vith dashed lines, and the corresponding origins of the B curve ar
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indicated with heavy crosses. To form X in breakpoint form, the values

of i1 and i2 that are read off the graph at the breakpoints are listed

in order, and then X can be converted to slope-intercept form if desired.

To verify that the solution is correct, we substitute X back into Eq. (72):

/1/21P 3/2 /1/2, 1/2

1\ 1, 1/3J 0, 3 )l 1 , .2 1+0 2, -1

6\ 3, 3/2 4 3, 1/ 0 0/

2 21 -1

2, 1/2 2,1/2 2o 2

S( 3 /, 31

2, 1/2

Fig. 30 illustrates the graphical solution of

-2: l1/ 2 + l  = -, (2 1 , ,11 ) (1l )  (73)

In this example, the breakpoint of B intersects A twice as B is slid

along C.

For a given value of il, the shifted B curve may not intersect the

A curve at all or it may intersect it several times. Thus, for certain

values of il, the solution curve may be undefined or it may be multi-

valued. For the network of Fig. lia,

v, L 1 ) + 0 , 0) 0  + 070 7/ 2  (i - - 2vl) + \0,01 ( i)

(74)
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If we let v, = - X (il), Eq. (74) can be reduced to

-10 /0~l-l, (x+ I) - x+ o 0 o (75)

6,-il

Although this equation could be solved by Eq. (69), we will use the

graphical procedure instead (Fig. 31a). As the origin of the B curve

slides along C, B first moves up through positions B1 and B2 until B3

is reached, and then moves down again through positions B4 and B,. Until

B2 is reached, there is only one intersection with A, but between B2 and

B3, there are three intersections, and beyond B4 there is only one inter-

section again. Thus, X(il) is triple-valued for -2 < 1 < 2 and single-

valued elsewhere. The solution has two distinct branches (the solid

curves in Fig. 31b). If we multiply this solution by -1/2, we obtain the

curve of v1 vs. i shown in Fig. llc.

If better accuracy is needed than can be obtained with the graphical

procedure, Eq. (71) can be used to calculate the numerical values for

each section of X after the appropriate sections of A, B., and C have

been selected graphically. For example, to calculate the first section

of X in Fig. 30, we take

(a 1 , a 2 ) - (-2, 1/2) (bl, b2 ) . (1, -1) (cl, c2 ) = (-1, 1)

and apply Eq. (71) to obtain x 1 (4/3, 1/3), which checks the graphical

solution.

Since the basic operation involved in the graphical procedure is the

determination of points of intersection of straight lines, in principle

it should be possible to describe the procedure in such a manner that it

can be carried out numerically. In the case where A, B, C, and X are

all monotonic (as in Fig. 29), the numerical procedure is relatively

straightforward. After Eq. (71) has been used to calculate a section of

X from appropriate sections of A. B, and C, a simple comparison scheme

is used to determine whether a breakpoint of A, B, or C will be en-

countered next. When some of the curves are multi-valued, the decision
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rule for determining the successive sections of A, B, and C that are to

be used is so complicated that it is not practical to formulate it in

detail. For this reason, the graphical procedure would be difficult to

adapt for use with a digital computer.

D. APPROXIMATE SOLUTION

The basic reason that Eq. (63) is difficult to solve is that the left
distributive law is invalid. If we had an approximation to the left dis-

tributive law, we could obtain an approximate solution of the equation.

We would like to obtain an approximate distributive law of the form

A(X + Y) - A'(X) + A'(Y) (76)

When X = Y, Eq. (76) becomes

A(2X) - 2A'(X)

If we choose A' so that Eq. (76) is exact when X - Y, we obtain

A' - ( -A.2) - (O, )A(0,2) (76a)

Using Eq. (76) to find an approximate solution to Eq. (63), we obtain

A(X + I) BX + C - A'(X) + A' (77)

and

X (A' - B)"I (C - A')

This solution is exact if A is linear. For Eq. (72),

-3, -l

-1, 0

(1/2,1/2)~ (/4,1/2 1/2, 3/2
A' . 1,1/3 "2 1/2,1/3) X - 19/18, 2 (78)

3/2, 3
2, 4
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And for Eq. (73),

4/3, 1/3

7/6, 1/6

-(~i14/3, 0 (79)
A.2 2 -3- .- 3/2, 1)

(8/3,-1/3

In these two examples, the results obtained by the approximate distribu-
tive law are very close to the correct solution as shown by the dashed
lines in Pip. 29b and 30b.

The approximate left distributive law can be applied to the approxi-
mate solution of more complicated INL operator equations. The results
will not always be as good as in the above examples, but solution curves
of the correct shape vill er .rally be obtained.

E. ITiATIVE SOLUTION

After an approximate solution to Eq. (63) has been obtained by using

the approximate distributive law, this approximation can be Improved by
using an iterative procedure. If we solve the left side of Eq. (63) for
X, we obtain X a B1 '[A(X + I) -C] 

(80)

which suggests using the iteration

Xk+l - B-'[A(Xk + I) - C] (81)

where Xk is the kt h approximation to X.

A sufficient condition for convergence of this iteration will now be

derived. Subtracting Eq. (80) from Eq. (81) yields

Xk+l - X - B1'[A(Xk + I) - C] - B1'[A(X + I) - C]

If A and B are first order, the distributive law of Eq. (57) can be ap-

plied, and

Xk+l - X - B-1Ax k - B 1 AX
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If A = (al,a2 ) and B = (bl,b2 )

BlA = (a1l1'a2) = ab)'2

and

( l " Xk) = (Oa 2/b2 ) (Xk - x) (82)

Starting with an initial approximation X applying Eq. (82) n times

yieldsnn

yils(Xn - X) = 2 ( 0~ )n (Xo _X)(.2.)n (X _ X) (83)
a 2  B.2

In words, the error in the nt h approximation is (a2/b2)n times the error

in the initial approximation. If ja2/b2 1 < 1, (a2/b2)n 0 0 as n ->

and (Xn - X) -O 0. If Xn and X are defined for the smae range of inde-

pendent variable, then Xn -0 X. Thus for any reasonable initial approxi-

mation to X, the iteration will converge if la2 1 < lb2 1. The ratio

I a2/b2 1 gives some measure of how rapidly the iteration will converge.

In general, the smaller the ratio a2 /b 2 1 and the closer the initial ap-

proximation, the more rapid will be the convergence.

We will now consider convergence when A and B are of higher order.

If every section of X converges to the correct value, then X must con-

verge to the correct value. If we knew which sections of A and B corre-

sponded to each section of X, we could apply the above procedure to test

the convergence of each section. However, we usually do not know which

sections of A and B correspond to a given section of X, so we will con-

sider the possibility that any section of A might be paired with any

section of B during the calculation. Since convergence of a given sec-

tion of X depends on the ratio of the slope of a section of A to the

slope of a section of B, the worst possible situation occurs when the

slope of A is maximum and the slope of B is minimum. Let IrAlmax be the

maximum absolute value of all the slopes of A and let IrB min be the

It would not be reasonable, for example, to approximate a single-valued
PWL operator, which is defined for all values of i , by a multi-valued
operator defined only for i1 > 0. In this case, tie iteration would
still converge, but not necessarily to the correct value.

- 74 -



minimum absolute value of all the slopes of B. Then if IrAlmax < IrBlmin,

convergence of all sections of X is assured, provided that the initial

approximation is sufficiently close. The iteration may converge in some

cases even if IrAlmax > I rBimin since the worst combination of slopes

will not necessarily be encountered during the solution of a problem.

In some cases where the iteration of Eq. (81) fails to converge, the

following iteration may be used instead:

X+l = A - (BXk + C) - I (84)

This iteration converges if Ir Blmax<IrAlmin. - If the iterations of

Eqs. (81) and (84) both fail to converge, a similar iteration may con-

verge for one of the equivalent forms of Eq. (63). For example, if we

solve Eq. (64) for X-1 by an iteration similar to Eq. (81), the roles of

B and C are interchanged so the new condition for convergence is

I max< 1 cimn •

Although these iterative methods are cumbersome to carry out by hand,

they are well suited for use with a digital computer. A number of ex-

amples of Eq. (63) have been worked on the Burroughs 220 using the itera-

tion of Eq. (81). The details of the computer programs are discussed in

Chapter IX. Several different initial approximations were tried for each

equation. The initial approximation obtained by the approximate distri-

butive law, Eq. (77), generally converges most rapidly, but in many exam-

ples, a much cruder approximation such as X = 0 converges almost as fast.

Since the initial and final segments of X are not difficult to calculate,

another useful initial approximation is a second-order PWL operator that

agrees with the initial and final segments of X.

The equation

(0, .1 (3,10\ (0.,1
0, 1 (x+I) = 3 , 21x+ o,.1 (85)

has IrAlmax IrB'mi n = 1/2; therefore, rapid convergence of the iterative

solution may be expected. Starting with the initial approximation,

X0 = 0, successive approximations X1, X2 , and X are plotted in Fig. 32.

Note that the maximum error is cut in half with each iteration. The

final solution,
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-6.7,.-03 30/101, 9/101

-10/3, 0 10/7, 3/7
X, -1, 1 1, 0

0, 1 1, -0.3

10/3, 0 3/11,-9/110

7,-0.3

is obtained correct to four decimal places in the breakpoints on the 1 3 th

iteration. Similar accuracy is obtained in 10 iterations when the initial

approximation is calculated by the approximate distributive law.

For Eq. (72), IrAlmxJIrBImin ' 1/2. Starting with the initial ap-

prpximation of Eq. (78), the solution converges to four-place accuracy

in seven iterations, and starting with Xo = 0, nine iterations are re-

quired. For Eq. (73), the iteration converges for all sections of X ex-

cept the last one. For this section, rA/rB = -1. Starting with the ap-

proximation of Eq. (79), after 15 iterations the solution oscillates

between the values

- -4, 0 -4, 0
-1, 1 -1, 1

2/3,4/3 and 2/3,4/3

3,4/3 3,4/3
5, 1 11, 0

-11, -l

A similar oscillation occurs after 21 iterations if x - 0 is used. In
0

cases like this, convergence can be obtained by applying an averaging

procedure after each iteration.

F. THE SECTION METHOD

As shown in Section IV. B, Eq. (63) has a simple solution if A, B,

or C is of first order. When all the operators are of higher order, it

is possible to break one of the operators into sections, solve the

equation for each section, determine the region of validity for each par-

tial solution, and then patch the partial solutions together to form the

complete solution.
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If C is of second order and single-valued, we can shift the break-

point of C to the origin by a change of variables and then write Eq. (67)
in the form A(i + - B ' 2 (0 (86

A1 2' - (2' * 0, c 2  ) ) .)

If i1 < 0, this becomes

A(i1 + i2 ) - B(i2 ) + (0,c 1 ) (il )

and, by Eq. (70)

i2 = [(A - c l) ' (B - cI ) - I]-' (iI ) = Xl(iI ) (87)

Similarly, for i > 0,

2 - [(A - c2)'l (B - c2) - If]1 (i) - X2 (i) (88)

If X1 (O) and X.2(0) are single-valued

0,0 (ix) i(o) if i > o (89)

X1(0, 0) Z fx(0) if i1 <>0

P o, (i) . X(i) if il > 0 (90)

Since i2 (0) - X1 (O) = X2(0), we can express i 2 in the form

i 2 = X .(1I 1= l(. )+ X - ] J X.10 O,9O,

For Eq. (85),

= 30/101 ,9/101) = 10/7 3/0)x, 10 l/71P 3/7 X2  = P,- 3/10
1, 0 ), -9/110
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X =X X 1 0, 0 + X2 O, 1 " XI(O)

30/101, 9/101
/101,9/101 0 10/7, 3/7

(30/7 3/ -10/3 + 1, -3/10 -(1,0) -1, 0

S0 o/'-1 10,-91/o /13 1, -3/10
3/3, -9/no/

which checks the result obtained by the iterative method.

We will now extend the above procedure in order to solve Eq. (63)

when C is of nth order and single-valued. We can separate Eq. (67) into

a series of n equations, each valid over a specified range of 1l:

A (i1 + i 2 ) B (12 ) + Ck (i1 ) bk 1 < iI :bk (k = 1,2, ...,n) (92)

where Ck is the kth section of C and bk is the kth breakpoint of C.

The solutions to these equations are

2 - Xk (i 1 ) - [(A - Ck) 'I (B - ck) - I] l (i) (k - 1,2, ... ,n) (93)

where ck is the slope of Ck. We now define

k (bkP ,1 (94)

as shown in Fig. 33. If X is single-valued at bk 1 and bk

Xk(b k-1) iI :S b k-1

Xk Qk(il ) { (il) bk 1< :S bk  (95)
Xk(b k )  b k ;C i1

Since i 2 (bk = k) -x(+l(b k)P i2 can be expressed in the form

n n-1

i 2 = x(i9 1) Z Xk %k(il) - Z Xk (b k) (96)
kal kal
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bk_

bk- I 1

bk-{ bk

FIG. 33. PLOT OF Qk.

We will now show that this equation gives the correct value of i 2 for

every range of i I .

If bj. il :S bj, by using Eq. (95) we obtain

a n-1

i 2  Xk (b k) + x j (i1) +Z3 Xk (b k 1) Z~ Xk (b k) (96a)

k-l k=j+l ka

n n-i U-1

Since Z X bk1 Z X~ bk k(k

k-j+1 k-j k-j

Eq. (96a) reduces to 12 - Xj (il), which is the correct solution for the

specified range of i 1 .

For Eq. (72),

X = X1 Q1+ X2 Q2 + X3 Q3 - x1 (bl) - x2 (b2 )

1/2, 1/2 0, 1. ( 1i " /7/3, 1/3 ,0

. 3/4,7/20 + o, + 3, 1 0,1 " (0,o)-(4,o)

-9/8, 7/8 /2, 3, 1/21 
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(01 0 - /p/

0o -l + o,2 \3,1/2 - 0, 2
0/ 3,1/2/

which checks the graphical solution of Fig. 29.

The section method can be applied directly to any equation of the

form of Eq. (63) provided that C is single-valued and all the partial

solutions are single-valued at the breakpoints of C. If C is multi-

valued, it may be possible to apply the section method to one of the

equivalent forms of Eq. (63), e.g., if B is single-valued Eq. (64) could

be used. If some of the partial solutions are multi-valued at the break-

points, the section method can still be used, but the partial solutions

must be combined graphically because the indicated multiplications in

Eq. (96) cannot be carried out. As an example, we will solve Eq. (75)

by the section method. The partial solutions

S/ 4.,-4/3
x1 - 2, 0 (il <_ )

-2a -2
and

°i)
x2. 2, -2 (1. >o)

\4,-2/3

are plotted in Fig. 31 with dashed lines. The complete solution is

formed by taking X1 for i 1 <0, and X2 for i1 >0.

The section method has also been programmed for a digital computer

(see Section IX. C. 4). It is superior to the iterative method because

it is much faster and there are no problems with convergence.
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G. TRIVOLUTION

Although Eq. (63) generally cannot be solved in terms of the basic

operations, it can always be solved by the graphical method, and in most

cases the equation or one of its equivalent forms can also be solved by

the iterative method or by the section method. Since the operation of

solving this equation occurs frequently in the solution of networks

which contain three or more NWL resistors, it is convenient to have a

name and symbol for the operation. We will write X = A*B*C as a symbol

for the solution of A(X + I) = BX + C, and since there are three operands

involved, we will call the operation trivolution.

Trivolution has several useful algebraic properties. In terms of

trivolution, the solution to Eq. (64) is X- M A*C*B. Since X - A*B*C,

we have the relationship

(A*B*)- A*C*B (97)

From Eq. (65),

Y -(x+I) - * *-c

and substitution of A*B*C for X yields

A*B*C + I= * * -C (98)

From Eq. (66),

Y - BXC"  l = A-'* B -l C-1

from which

B(A*B*C) (A1 * B'l* c1 )c (99)

If Y = A*B*C),

A(-Y + I) = B(-Y) + C or K(Y' I) RY + C
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Postmultiplying by (0,-i) yields

( + I) . +

from which

or Y = -(A*B*C) - ; * * (100)

If A, B. or C is first order, trivolution can be expressed in terms of

the basic operations. For example, if A = (ala 2 ), from Eq. (68)

A*B*C -(A - B)"1 (C - a2 ) (101)

Trivolution would not be a very valuable operation if it could be

used to solve only one form of equation. Fortunately, in combination

with the basic operations, trivolution can be used to solve many other

types of equations. To solve

A(X - I) - BX + C (102)

postaultiply both sides by (0,-i) to obtain

A(X + I) BI +

from which

X = A *B* (103)

To solve

A(DX + E) BX + C (104)

postmultiply both sides by E"I and replace B with BD , to obtain

A(DXE "1 + I) = BD "1 (DXE 1 ) + CE 1
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from which

X - D1 (A *BD -l* CE- )E (105)

To solve

A(X + D) = B(X + E) + C

we first rewrite the equation in the form

A[(X + E) + (D - E)] - B(X + E) + C (106)

Since Eq. (106) has the same form as Eq. (104), we can solve for X + E

by Eq. (105), which yields

x- [A * B * C(D - E) 1 ] (D - E) - E (107)

Other equations can be solved by using trivolution two or more times.

As an example, we will solve

B[A(X + I) - E + X] - C[A(X + I) - E] + DX

for X. Postmultiplying by X"I yields

B[A(I + X"I ) -EX "I + I] f C[A(I + X"I ) - 1] + D

Applying trivolution once, we obtain

A(I + X"I ) - EX"I = B*C*D

Postmultiplying by X and adding E to both sides yields

A(X + I) = (B*C*D)X + E
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from which

X A * (B*C*D) * E

Similarly, X = (A*B*C) * D * E is the solution of

A[(D + I)X + E + I] - B(DX + E) + C(X + I)

Unfortunately, there are many PWL operator equations which cannot be

solved by using trivolution in combination with the basic algebraic opera-

tions. Such equations can often be solved using a combination of trivo-
lution with an iterative procedure. As will be shown in Section V. G.#

sets of simultaneous equations which occur in the analysis of resistive

PWL networks can be solved by using trivolution and iteration.
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V. ANALYSIS OF RESISTIVE PWL NETWORKS

PWL operators have been defined to represent the characteristic

curves of PWL elements, algebraic operations have been defined for PWL

operators, the algebraic properties of these operations have been studied,

and the basic techniques for solving PWL-operator equations have been

discussed. We are now ready to apply these results to the analysis of

resistive PWL networks. Methods for obtaining the input and transfer

characteristics of series-parallel PWL networks and more general PWL net-

works containing one, two, or more PWL resistors will be studied.

A. SERIES-PARALIEL NETWORKS

The v-i characteristic of n PWL resistors in series is

n

RXR k (1o8)
k=l

where R is the v-i characteristic of the kth resistor. By duality, the

i-v characteristic of n PWL resistors in parallel is

n

G =Z Gk (109)
k-1

where Gk is the i-v characteristic of the kt h resistor. Taking inverses,

the v-i characteristic of n PWL resistors in parallel is given by

Z (11o)

The input v-i characteristic of any series-parallel network that is com-

posed of PWL resistors can be found by using the above equations and in-

version. As an example, the series-parallel network of Fig. 5a will be

analyzed by NWL operators. The i-v characteristic to the right of a-a'

is given by

(-, 2) + 0, 0= -1, /2 = 2, 2

6, 312 5, 2 -5/2, 1/2
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The v-i characteristic to the right of b-b' is

/,2,2
2-F((0 2) . -5/2,,1/2

L /2/ -3 + '/ ,) -6, 2]3j \ -, 31

-1,1/2
5.9, 2
2, 1

The input v-i characteristic is then

1,1/2 \/-1,1/2

( 0 52 / o., \) 5,2
28 13 + , 4 2, 1

813,v31 /  83,1/3
O, 1

which checks Eq. (5).

The PWL characteristic of the network of Fig. 6c can easily be de-

rived in terms of PWL operators. The i-v characteristic of Fig. 6a is

3 - +  .,6) (v1 )" ( 0,-3 (vl) = A(vl)
\-6, 3)

The terminal current and voltage in Fig. 6c are related to i1 and v 1 by

i 2 =i 1 - v = (A - I) (v 1 )

v2 =1 + v  = (A+ I) (v1 )
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Solving the second equation for v1 and substituting in the first yields

i 2 = (A - I) (A + I) "l (v2 )

"°l

6, 2 6, 4)(2= 6, 2 1 1-3/2j,1/4

=, ,-4) ( ,-j(v2) -- ( ,- - ( ( ,-1/2 )(v2)\-6', 2 -6, 41 -6, 2) 3/2,. 1/4)

Carrying out the indicated multiplication, we obtain

1= ( 2 (v2 )
-3,1/2/

which checks the result given in Fig. 6d.

Many of the simple rules for working with linear resistive series-

parallel networks have NL analogs. For the voltage divider of Fig. 34,

the input voltage is

v = v1 + v 2 = R1 (i) + R2 (i) = (R1 + R2 ) (i)

Solving for i yields

i -- (R1 + R2 )-1 (v)

The output voltage is

v2 = R2 (i) = R2 (R1 + R2 ) "1 (v) (111)

If R and R2 are linear, this equation reduces to the familiar voltage-

divider rule

r 
2

2 =rl + r- v

r1  2
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+VI -

+ R +

V 
V

FIG. 34. PWL VOLTAGE DIVIDER.

For computational purposes, the transfer characteristic for the

voltage divider of Fig. 34 can be rewritten as

R2(R 1+ R12 )- = [(R1 + R2)R 2"1 1-= (R 1R2
"  + I) ' I  (112)

Given numerical values for R1 and R2, the latter expression is easy to

evaluate. For

= -1, 1 and R2 = -2
\1, 0 2. 1

we obtain

/ 1 /20, 1 /1 "

BR -4 

1/2

1R2 1, 1 24 1,1/2 a -
1, 0 -2, 1)

and

1 ( 3/ 1 -1 = 2/3,.2/3'
(RR2 "

1 + 1) -1, 2 (R1 2
" + 1) =1/2,1/2

1, 1/-1, 1/
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B. INPUT AND TRANSFER CHARACTERISTICS OF PWL LADDER NETWORKS

The input and transfer characteristics of PWL ladder networks can be

found by applying standard ladder-network techniques. Consider the gen-

eral PWL resistive ladder network of Fig. 35 with the v-i characteristics

of the series branches represented by the PWL operators RI, R2, ... , R n

and the i-v characteristics of the shunt branches represented by

GI, G2, ..., Gn . The analysis proceeds as follows:

i G 1 (vo)

V =R 1 (i1) + vo (R1G1 
+ I) (vo)

1 2  G 2 (V 1 + I - [G2(R1G1 + I) + G (vo)

v2  R2 (i2) + v1 a 2 [G2(RIG1 + I) + G1] + R1G1 + I} (vO)

and so on.

At the (n-i)th step, we have expressed inl and vn.1 in terms of v0 . If

i n 1  A(v) and vn 1 "g B(vo0), then the nth step is

i = Gn (Vn-l) + Cn. 1 - (GnB + A) (vo) (113)

vn aR n (in) + Vn 1 -[Rn(GnB + A) + B] (vo) (114)

which expresses the transfer characteristic of the ladder. Eliminating

v* , An  Vn- 1 an-I V2  R2  Vi RI Vo

''On 2 ,I

FIG. 35. GENERAL PL. LADDER NETWORK
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v0 from Eqs.(113) and (114) gives the input v-i characteristic as
eO

vn M [Rn (GnB + A) + B] (GnB + A)
1 (in)

-1 11

- [Rn + B (GnB + A)
"1 ] (i) [Rn + (Gn + AB

"1  (in )

(115)

The above analysis shows that the input and transfer characteristics

of any resistive NL ladder network can be calculated in terms of NWL

operators.

C. THE BRIDGE NETWORK

Non-series-parallel PWL networks are generally more difficult to

analyze than series-parallel networks. The bridge (Fig. 36), which is

the simplest non-series-parallel network, will be analyzed for various

combinations of linear and PWL resistors. When the bridge is balanced,

i 0, and vl = v2 . Using the voltage divider formula, Eq. (112),

v, M (RlR2 "l + I)"z (v)

and

v2- (R3R4 - + I)-1 (v)

Equating v1 and v2 gives the equation of balance as

(RIR2
"I + I)"I (v) = (R3R4 -1 + I)"I (v)

or

RR2
" = R3R4 -1

The unbalanced bridge is easy to solve in certain cases. If R and

two adjacent arms are linear, a delta-wye or ye-delta transformation

can be performed on the linear part of the network to reduce the bridge

to a series-parallel network. If R5 and an adjacent arm are PWL, such a
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+ V R
v 2

FIG. 36. A PIL BRIDGE NETWORK.

transformation is impossible and it is necessary to write loop or node

equations in order to analyze the network. The v-i characteristic of a

diode bridge network* (Fig. 37) will be derived as an example.

+ -

FIG. 37. A DIODE BRIDGE NETWORK.

The equations for the indicated loops are

(R 1 + 3) (i 1 ) + 3i2 -i = 0 (116)

3i1 + (R2 + 4) (1.2) -21- 0 (117)

where R6d 1
R= and R2=

* 
+

Stern [Ref. 5, pp. 20-23] analyzes this same network using - trans-
formations.

**The loops have been chosen so that each PWL resistor is traversed by a
single loop current.

- 92 -



The input voltage is given by

v = 2i -i1  -212 = R(i) (118)

If we substitute X(i) for i1 and Y(i) for i 2 in Eqs. (116), (117), and (118),

and then cancel i, we obtain three simultaneous PWL operator equations:

(R1 + 3)X + 3Y- I = 0 (119)

3X + (R2 + 4)Y- 21 = 0 (120)

R = 21- X - 2Y (121)

To solve these equations for R, we first use Eq. (121) to eliminate Y

from Eq. (119) and X from Eq. (120), obtaining

(R1 +3/2)X+21-(3/2)R=0 or (2R 1 
+ 3)X= '3R- 4

(R2 - 2 )Y+41 - 3 a 0 or (R -2 )Y =3R -4

Next, we solve these equations for X and Y respectively and substitute

into Eq. (121) to obtain

(R-2)+(2Rl + 3) (3R-4)+2(R2 - 2 )
" (3R - 4)=o (122)

Observing that

(R - 2) - 1/3 (3R - 4) - 2/3

and applying the right distributive law, Eq. (122) can be rewritten as

[13+-l + 3 '  -1]
1/3 + (2 +3) +2 (R2 -2) ] (3R -4) =2/3

Solving this equation for R, we obtain
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R - 1/3 (11/3 + (2Rn + 3)"l + 2(02 - 2)'] " . 2/3 + 4) (123)

This equation can be evaluated for the given values of R1 and R2 as

follows:

S 1/3f 1/3 + + 2 2/3 + 4

- 1/3 1 2/3 + 4 ] I)3 1 2/3 + 4

(0, 30 , 17/9

O 1/3 , 2
W 1/3 3/2/3 -2 1/2, 1

(5/3, 26/9 ) (5/9,26/27

The resulting IWL operator represents the input v-i characteristic of

the diode bridge network.

Figure 38a shows a bridge network with three PWL elements. To

facilitate analysis of this network, the voltage source is replaced with

two parallel sources (Fig. 38b), and then these sources are transformed

to current sources (Fig. 38c). In the final network, F is the parallel

combination of r1 and R2 , and R4 is the parallel combination of r 3 and

R. The voltage around the loop is

R (i)+5) + [(v/r3)+is]- 2 ((v/rl) - i5] -

When this equation is solved to obtain the relation between i 5 and v,

the other voltages and currents in the network can be expressed as
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functions of v. Substituting Y(i 5 ) for v, we obtain the PWL operator

equation

r1 Y + I) - R; (l Y - I) - R

r3 r1

The change of variable, Y a (r1 + r 3 )X + rl, reduces this to the form

,r I  R r 3 ) X -RR4 (1 + l) (X + I) - 2 (1 + _r) X- R

31

which can be solved for X by trivolution. An example of the solution of

a bridge network with four PWL elements is given in Section V. H.

D. RESISTIVE PWL NETWORK WITH ONE PWL RESISTOR

In the preceding sections, we have seen that it is always possible

to analyze series-parallel PWL networks in terms of PNL operators and

that solutions can also be obtained for simple non-series-parallel net-
works. We will now try to determine what class of resistive PWL networks

can be analyzed by PL operators and formulate a general method of

analysis. We will start by deriving the input v-i characteristic for a

linear resistive network that contains one 1L resistor imbedded in it.

To facilitate the analysis, the linear part of the network is separated
from the INL part, and the network is redrawn as a linear two-port ter-

minated in a PWL resistor (Fig. 39).

0 as 4

13 rs

(a) (h) )

FIG. S8. A BAID8G WITE T13 PL ASSISOMS.
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+ LINEAR

!I RESISTIVE R!2
NETWORK

FIG. 39. GENERAL RESISTIVE NETWORK WITH
ONE PWL RESISTOR.

This procedure permits part of the work to be done on the linear portion

before the nonlinear portion is considered. The two-port may contain de-

pendent sources and non-reciprocal elements just as long as it is linear.

The two-port can be described by its z-parameters, and the terminal be-

havior can be expressed by the equations

v 1 = zlll - z 1 2 12  (124)

v 2 = Z2 1 11 - z2 212 - R(i2 ) (125)

Solving the second equation for 12 and substituting in the first equa-

tion, we obtain

12 - (R2 + z22 )- z 2 1 (il) (126)

v1 Z Z12(R 2 + z22 z21 (Y

= (z11 - z1 (R2 + z 2 2 ) "l z21l (il) (127)

As a partial check on this result, note that when R is linear the above

equation reduces to the correct form
z 1l2 Z21 i1

1I = - r2 + z22

The minus signs result from the choice of reference directions for the
currents.
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As an example, we will apply Eq. (127) to determine the input char-

acteristic for the network of Fig. 40. For this network,

11= 3, z1 2 = z 2 1 ' I, z22 =2, R= (, i/2

22 ( 1, 5/2 22 2/5 2/5

(R-1 01 ,1/3 f 0), 8/3\
11-2z 22) z2j* = 2/5 2/5)K2/5,,13/5,

This same result could also be obtained by a series-parallel analysis.

The transfer characteristic that relates any two voltages in a

linear resistive network with one PWL resistor can also be found. If we

add a third port to the linear network of Fig. 39 and set i = O, the
3

terminal behavior of the network is now described by Eq. (124), Eq. (125),

and

v3 =z 31 il -z32 i2  (128)

From Eq. (127),

S(z 11 - z 12 (R2 + z2 2
) .lz 2 1

1 (v1 ) (129)

Substituting Eqs. (126) and (129) into Eq. (128), we obtain the desired

transfer characteristic as

v3 = [z31 - z32 (R2 +z 2 2 )
1  z [ -z 12 (R2 + z 2lz 1 '1.(v)

(130)
2 I

0 p

FIG. 40. EXAMPLE OF A NETWORK WITH ONE PWL RESISTOR.
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E. PWL NETWORK WITH TWO PWL RESISTORS

A linear resistive network with two PWL resistors imbedded in it can

be analyzed in a manner similar to that with only one PWL resistor. The

network is first redrawn as a linear three-port terminated in two PWL

resistors (Fig. 41) and the terminal relations for the network are ex-

pressed in terms of the z-parameters by the equations:

V 1  Zll i1 - Z 1 2 12 - z1 3i 3  (131)

v2 - =z 21 i1 - z22 12 - z23 i 3 =R 2 (i2 ) (132)

v3 = z 31 i1 - z32 i2 - z33 i3 = R3 (i3  (133)

Combining the last two equations gives

z21 z31 i1 = z 31 (R2 + z2 2 ) (i 2 ) + z31 z2 3 i 3

21 (R3 + z3 3 ) (i3 ) + z21 z32 i2

Solving this equation for i3 yields

i3 = [z21 (R3 + z3 3 ) " z3 1 z2 3 ]1 (z 3 1 (R2 + z2 2 ) - '21 z32 ] (i 2 )

SA (12)

Substituting A (i 2 ) for i 3 in Eq. (132) and A-1 (i 3 ) for i 2 in Eq. (133)

and solving, we obtain

1 = (R2 + z22 + z2 3 A)
" z21 (il)

i = (R3 + z33 + z 3 2 A) -l31 (i)

from which
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v 1 = [zll - z1( 2 +'22 + '23 A) ' z 2 1

- z13 (R3 + z33 + z32 A-1)"I z31] (i4) (134)

where

A [z 2 1 (R3 + z3 3 ) - £31 z23] [z31(R2 + z2 2 ) - z21 z32 ]

II V2

+ L I NEAR -

rI RESISTIVE
NETWORK V

riG. 41. GE4IAL RESISTIVE Nmt-- aiTd

TWO PIL EISITOS.

Evaluation of this expression for given values of the constants may be

vairly laborious. In the special case where z12Z31/23 0 z13z21/32,

which includes all reciprocal networks, a simpler equation for the PWL

input impedance can be derived. Following a procedure similar to that

used to solve the diode bridge network (Fig. 37), we can show that

3 z_ 1 13
R - [ 21 (R 2  + 22 13 1 £13 3  + 33 z 11

+ I~ zl 3 Z 2 l +~ l -£13 z21) (135)z 23 ( 1 z 23

Evaluation of this expression requires only one addition of two higher-

order PWL operators compared with three additions and one multiplication

for Eq. (134). Voltage-transfer characteristics for the resistive net-

work with two Nt resistors can also be found by an extension of the

procedure used in Section V. D.
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F. PWL NETWORK WITH THREE PWL RESISTORS

In Sects. V. D. and V. E., general methods of analyzing resistive

PWL networks that contain one or two PWL resistors have been derived. If

possible, we would like to generalize this procedure to three or more

PWL resistors. Unfortunately, attempts to do this lead to PWL operator

equations that cannot be solved in terms of the basic operations of ad-

dition, subtraction, multiplication, and inversion, so trivolution and

iterative procedures must be used.

For purposes of determining the PWL input characteristic, a linear

resistive network that contains n PWL resistors imbedded in it can be re-

drawn as a linear (n+l)-port terminated in n PWL resistors (Fig. 42 ).

LINEARt 12

FIG RAESTIVE ++ NETWOK 32

As long as it is linear, the (n+l)-port may contain dependent sources or

other non-reciprocal elements. When d-c sources are present in the (n+l)-

port, equivalent sources may be brought out at the terminals and com-

bined with the P!VL elements.

Instead of describing the terminal characteristics of the (n+l)-port

by z-parameters that relate the v's to the i's, it is more convenient to

choose the voltages and currents at some of the ports as independent

variables and express the remaining voltages and currents in terms of
these variables. For n =3, we choose v2 , i 2 , v3 , and i 3 as independent

variables and then express Vo, i o , Vl, and i 1 in terms of these varia-

bles by the equations.
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v0 = a2 v2 + a03 v3 + b02 12 + b03 13

v 1  a12 v2 + a1 3 v3 + b12 12 + b i3  (136)

±0 = c02 v2 + c03 v 3 + d i2 i2 + do3 i3,

I Mc 12 v2 + c13 v3 + d12 i2 + d13 '3

The coefficients are, in a sense, a generalization of the ABCD-parameters

that are used to describe two-ports. These coefficients can be calcula-

ted directly from the linear network or expressed in terms of the z-

parameters.

We will now formulate the equations for finding the input PUL char-

acteristic of a linear four-port terminated in three PWL resistors. We

can eliminate the voltages from Eq. (136) by the substitutions

v0 - R0 (±0), v, - R, (il) ,  v 2 = R2 (12), and v3 - R3 (i 3 ),

where RI, R2 , and R3 are the impedances of the three PWL resistors, and

R0 is the desired input impedance. Performing these substitutions, we

obtain

v = (a0 2 R2 + b02) (12) + (a 0 3 R3 + b 03 ) (43)

(137)

- Ro[(C0 2 R2 + do2) (i 2 ) + (c 0 3 R3 + d0 3 ) (3)]

v, - (al 2 R2 + b12 ) (12) + (a,, R3 + b1 3 ) (3)

(138)
= Rl[(c1 2 R2 + d) (2) + (c1 3 R3 + d1 3 ) (i 3 )]

To simplify these equations, we let i 3 - Q(i 2 ) and

RJk i ,k~k +b{k)
Sjk a cjkRk + d jk (j - 0,i; k - 2,3) (139)
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After performing these substitutions and cancelling i 2 , we obtain

R0 (S02 + 803 0) R 02 + R03 Q (140)

R1 (S2 + S13 Q) -R1 + R1 3 Q (141)

Using Eq. (105), we can express the solution to Eq. (141) in terms of

trivolution as

Q = S13  (R1* R13S13
I  * R1S1 ) S (142)

From Eq. (140), the desired input impedance is

Ro - (R02 + Ro3 Q) (802 + S03 Q)-I (143)

Thus, by using trivolution in combination with the basic operations, we

can find the PWL input impedance of any resistive network that contains

three PWL resistors.

G. RESISTIVE PWL NEWORK WITH N PWL RESISTORS

When n is odd, the linear resistive network with n PWL resistors

(Fig. 42) can be solved by an extension of the procedure used for n = 3.
If m = (n-l)/2, we choose the last m+l voltages and currents as inde-

pendent variables and express the other voltages and currents by the

matrix equation

v a .... v'TO OO .ao O .0

v a ..,a b ...bm
-- -- - in -- - -- -_ (144)
.oo ,c oo ... .o

i c o " _ . mc

where v = vk+m+l and ij = ik+m+1  (k = 0,l,...,m)
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The sub-matrices [aij] , [bij], [cij]o and [dij] can be determined from

the impedance matrix of the linear network.*

The matrix equation represents n linear equations. We eliminate the

voltages from these equations by the substitutions

Vj = R (i ) (j = o,1,....,)

W R(i ) = R (i) (k - O1....)
k k k~in+lk)

to obtain m+l equations of the form

m m

= Z ik) Rj[ Z Sj ('I)] (J ',1,..., (14I5)

k=o k=o

where

Ri- ajkR + bk

(3 0,l,...,m; k - 0,1,...,.) (146)
Sjk CJk + djk

If we make the substitutions

- xk(i,) (k = 0,1,...,-)

and then cancel io, we obtain m+1 PWL operator equations of the form

M m

Rk X = Rj (E SjkXk) (J = O,1,...,m) (147)
k=o k=o

where XO = I and the remaining X's are unknown PWL operators. Solving

the first equation (j = 0) for RO, we obtain

* Except for some changes in sign, the matrix in Eq. (144) is the same as
the transmission or chain matrix of the network. The relation between
the transmission matrix and the impedance matrix is discussed in Bayard
[Ref. 7].
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o= RokXk) T SokXk)" (148)
k=o kwo

The m unknown X's can be found by solving the remaining m equations

simultaneously by using iteration and trivolution. Rewriting Eq. (147)

in the form

R (S~ iix + z sjXk) = RjXi+ z RjkXk J l,2, ... im)

k=o k=o (149)
(k~A) (k~A)

we can use Eq. (105) to solve for Xa. We have now demonstrated that the

jth equation can be solved for Xj in terms of the other m-1 ,Is. Thus,

we have reduced the problem to solving a set of simultaneous equations

of the form

X = f ( ...,xj-ljl (a - l,2,...,m) (150)

To solve these equations, we can set up an iteration of the form

k 0 .0'." Xk-l' 9 9+l'"" ( ] l,2,...,) (151)

where Xk is the kt h approximation to X
a a*

A general procedure for deriving the input v-i characteristic of a

resistive PWL network can now be stated!

1. Whenever possible, select two-terminal sub-networks that contain
PWL resistors and reduce each sub-network to a single equivalent
PWL resistor.

2. When all such simplifications have been made, redraw the network
as a linear n+l-port terminated in n PWL resistors.

3. If n is odd, determine the matrix of coefficients in Eq. (144) and
then calculate the Rik's and Sjk's by Eq. (146).

4. Write m - (n-l)/2 simultaneous equations of the form of Eq. (149).

5. Solve these equations using an iteration of the form of Eq. (151)
and then calculate R0 by Eq. (148).
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A similar procedure has been derived for n even. In this case, the prob-

lem reduces to the solution of n/2 simultaneous PL-operator equations.

The derivation in this section serves to illu3trate a general ap-

proach to the analysis of resistive PWL networks. We have shown that the

analysis of a network with n PWL resistors can always be reduced to the

solution of n/2 or fewer simultaneous lWL-operator equations. The gener-

al method outlined above is rather cumbersome to use and, for the solu-

tion of many PWL-network problems, it is easier to formulate a special

procedure instead of using the method exactly as given above.

H. EXAMPLES OF ITERATIVE SOLUTIONS

The bridge network of Fig. 43, which has four PWL resistors, can be

described by the loop equations

R2 ('i) + Rl(i1 + i) + (il - i2 ) = 0

R3(12) + R4 (i2 + i) + (i2 - il) - 0

If we let i1 = X(i) and i 2 a Y(i) and cancel i, we can rewrite these

equations as

Y ,(R 2 + I)X + Rl(X + I) (152)

x .(R3 + + + I) (153)

If we eliminate Y by substituting the first equation into the second, we

obtain a PWL-operator equation in X which we do not know how to solve,

so we will solve Eqs. (152) and (153) with an iterative procedure.

Using trivolution to solve Eq. (152) for X and Eq. (153) for Y yields

X = R1 * (R2 + I) * Y

Y = R * -(R 3 + I) * X
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FIG. 43. BRIDGE NETWORK UITU FOUR Pit. RESISTORS.

We then set up the iteration

Yk+1 - R * 3 + I) * Xk+ (155)

where is the kt h approximation to X, and Yk is the kth approxbt:Lon

to Y. It can be shown that a sufficient condition for the convergence

of an iteration of the form

k+ l - A * B * Yk

Yk+l ' C * D * Xk+ 1

is p - IraJ " rbk I min * I rcj - rdk min > 1

where Iraj - rbk I min is the minium value of Iraj - rbk

r aj is the jth slope of A, and rbk is the kth slope of B.
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For the network of Fig. 43, we have

/0, 1)

A =R 1 = 0,1/2

B = -(R 2  + ) = - O, O, + (0 ) , 3

C =R 4 = 2

D -(R + + (00,i .,-

-(R3 2) I i 1, -3

For these values, p = 15/2 and convergence is assured. The iteration
was carried out on the Burroughs 220 Computer (see Section IX. D.).
Starting with an initial approximation Yo = 0, the iteration converged

to four-decimal-place accuracy in six iterations. The following solu-

tions were obtained

-4.0000, 2.0000 -4.0000, 2.0000

-2.4286, 1.2857 -2.4286, 1.4286

X = -1.871 1.0000 y= -18571, 1.1429
-0.6000, 0.2000 -0.6000, 0.50000.6000, 0.2000 0.6000, 0.000

3.0556,-0.5556 4.o667,-2.oooo

The input PWL resistance to the network is

-4.0000, -5.0000
-2.4286, -3.1429

R° a RI(X + I) + R4 (Y + I) = -1.8571,-2.2857 (156)
14(+1) -0.5000, 0.0000(16

0.6000, 1.6000
4.0667, 5.7333

As a second example, we will derive the input and transfer charac-

teristics of the bridged-tee network of Fig. 44. The nodal equations

for this network are
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e2 +G (e 2 -e 1) G2 (e 3 -e 2 ) =0

Gm (e3 ) + G2 (e3 - e2 ) - G1 (el - e3 ) = 0

+ iv* 2
ea !

FIG. 44. BRIDGED-TEE NETWORK WITH FOUR PWL RESISTORS.

If we replace e2 with X(e1 ) and e3 with Y(e1 ) and then cancel el, we ob-

tain the PL-operator equations

X + Go (X -I) - G2 (Y -X) =0 (157)

Gm (Y) - G1 (I - Y) + G2 (Y - X) = 0 (158)

To solve Eq. (157) for X, we first rewrite it in the equivalent form

62((X - I) + (I - Y)] = Go(X - I) + I

where G' = G + I. Postmultiplying by (I - y)-i and solving for (X - I)
0 0by trivolution, we obtain

(X - I) = [G2 *o (1 - y)lI (I - Y) (159)

Adding Eqs. (157) and (158) and rearranging terms, we obtain

G1 (-Y + I) = G (Y) + G (X - I) + X = % (-Y) + GoX + I

Solving for -Y by trivolution yields

-Y=G * G *(Gx + ) (160)
-m 0
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On the basis of Eqs. (159) and (160), we can set up the iteration

Xk+l [U2 * Got ( -Yk) (I - Yk) + I

Y k+l [G1 m (%Xk+l + I)]

This iteration was carried out on the Burroughs 220 Computer using the

following values for the PWL conductances

0, -.1 -1, -.1 .i, 0

1 2 L Ol ILOJ 1j1i 1, 11,1.1

Starting with the initial approximation X0 = (0,1/2), the iteration con-

verged to four-decimal-place accuracy in seven iterations. The follow-

ing values were obtained

-3.6889, -i.3445 -3.1285,-0.2000
-2.2626, -1.1313 -2.2626, -0.1313
-0.1000, -0.1000 -0.1000, -0.1000

X = 0.9107,-0.0149 Y = 0.9107, 0.9256
1.0899, 1.0075 1.0899, 1.0824
2.3232, 1.3322 2.3232, 2.1121
3.5556, 2.4656 3.5556, 2.3233

X represents the transfer characteristic between e2 and el, and Y repre-

sents the transfer characteristic between e3 and e1 . The input current

to the network is

-3.6889, -2.7889
-2.2626, -1. 4444
-0.1000, -0.0997

i 1 =G1 (1 - Y) - 0 (X - I)] (e1 ) 0.9107, 0.0926 (e 1 )
o 1.0899, 1.0075

2.3232, 1.3322
3.5556, 2.4656

Using techniques similar to those illustrated above, several other
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examples of PWL network equations were solved iteratively with the com-

puter. In problems of this type, it may be necessary to try several

different iteration schemes for solving the PWL-operator equations be-

fore one is found which converges satisfactorily.
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VI. NWL TWO-PORTS AND PIECEWISE-PLANAR FUNCTIONS

In the preceding chapter, we considered methods for determining the

input and transfer characteristics of resistive PWL networks driven by a

single source. We will now consider the problem of describing the char-

acteristics of a PWL two-port which may be driven by two independent

sources. By analogy with linear networks, one might expect that a NWL

two-port could be described by equations of the form

v1 Ru.1 (i1 ) + (1 2 )

v2= R2 1 (i'l + R22 (1 2 )

Unfortunately, equations of this form apply only in special cases. In

general, the input voltages to a PWL two-port will be piecewise-planar

functions of the input currents. That is, a three-dimensional plot of

- f(ilVi 2 ) will consist of a series of planar sections that meet at

breaklines. In each planar region, v1 is a linear function of i1 and

i 2 . Piecewise-planar functions can be described mathematically by speci-

fying the equation of each plane together with a set of inequalities

that describe the region in which this equatipn is valid.

A more convenient representation of piecewise-planar functions in

terms of NWL operators has been studied, and attempts to generalize the

concept of IWL operators to piecewise-planar operators have been made.

Lattice, tee, and pi networks have been analyzed to provide examples of

piecewise-planar functions.

A. PWL SYMMIC LATTICES

A symmetric lattice network composed of IWL resistors (Fig. 45a) is

relatively easy to analye. In Fig. 45b, the lattice is redrawn as a

bridge with the current sources redistributed. It is easy to verify

that the currents supplied to nodes a, b, c., and d by the current sources

are the same in Figs. 45a and 45b, and therefore the voltages between

the nodes are unchanged. From symmetry, the net current flowing around

- .11 -



aC 1 ( ii 2) 0(-1+12)

+ + )b
v1  2Rb i 2  12 v i-d

-Rb R

b a *

(a) (b) ~~~2 (ra
FIG. 45. SYMMETRIC PUL LATTICE.

the loop adbca in Fig. 45b is zero, so the terminal voltages are

V ab =Vl 1- Rbi (1l+i'2 ) +R J('1 - 2 ) (161)

cd 'v 2 1 R (' + 2 ) -Rai (1  - '2) (162)

By adding and subtracting these equations, we obtain

v+ V2 -2Rb' (i +i 2Y and v1 -v2 -2RJ (i - id)

Solving these equations for i1 and i 2, we obtain

Rb +R (vI - v2) (163)

i = Rb 1' (v1 + v2 ) - Ra'l (v1 - v2 ) (164)

Thus, for the PWL synmetric lattice, FWL operators can be used to express

the v's in terms of the i's and conversely. The general PWL lattice is

much more difficult to analyze.
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B. PWL TEE NETWORKS

Although it is easy to express the terminal voltages of a INL T-

network as a function of the terminal currents, it is often difficult to

solve for the currents in terms of the voltages. For the network of

Fig. 46,

v R, (i l ) + R3 (i + 12 )  (165)

v2  R R2 (i 2 ) + R3 (i1 + 1.2) (166)

Ig A2 0
' I 1 2

+ +

V1  R3{ v33 v2

FIG. 46. PVL T-NETWORK.

When any two of the three PWL resistors are linear, it is possible to

solve for i1 and 12 . For example, if R1 and R2 are linear. the sum of

Eq. (165) and the product of (rl/r2 ) and Eq. (166) is

rl r

Vl + . v2  (R3 + r2 R 3 
+ r ) ( i l + 12 (167)

from which

r) ( rl

Subtracting Eq. (166) from Eq. (165), we obtain

v1 - v2 - r1i1 - r212  (169)

Solving Eq. (167) and (169) simultaneously for i1 and 1.2 yields
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~r>

r+r 2  v + r2 A (v + v2  (170)

r + r2  -- A(v + v,] (171)

When only one of the resistors in the T-network is linear, solving

for the currents is much more difficult. For the network of Fig. 47

the terminal voltages are

= (, i/1 (1.) + (, / (i1 + 12) (172)

/0 1 /0, 2\v =i o0, (0$3/)(13
v 2 =2 0 1/2) (il 1 2 ) 0, 3/2 (l . i2 ) "i1  (173)

FIG. 47. PUL T-NETWORK WITH TWO PWL RESISTORS.
If we make a three -dimensional plot of v 1 vs i and 12'the resulting

1L~1

piecewise-planar surface has four planar sections. Examination of

Eq. (172) shows that

I + 1 2 <0)

1/2 1/o 1 +

v= 3/2i 1 + i 2  ( 1 ><O0, i1 +1 2 >O)
3 1 + 1 2  (1 0,1 +i1i2 >o)

Vl)- n42



Fig. 48a represents a top view of this piecewise-planar surface. The

breaklines, 1I = 0 and i1 + i 2 = 0, divide the il-i2 plane into four

sections. A similar representation of v2 has two sections separated by

the breakline, iI + i = 0.

12 V2

V 1I1412 11+'(v1+v 2

11+X120 
11+120 -J,",+112 1,'-10,'+2)

V1 211l+12 1110+

*V1.1I \1+12 \

(a) (b)

t
FIG. 48. BREAKLINE PLOTS FOR THE NETWORK OF FIG. 47.

We will now solve Eqs. (172) and (173) to obtain i1 as a piecewise-

planar function of v1 and v2. Solving Eq. (173) for (i1 + i2 ) and sub-

stituting into Eq. (172), we obtain

v = , 12 (ip) + op 1/2) 0 2/3) (v2 + il) (174)

Since we do not know how to solve this equation for i directly, we will

solve in sections. If i1 < 0,

vl = i + (0, 1/2) (v +  / (0, 3/2 (v + i v (175)
v1  i 1 + 0,1/3) ( 2 +i 1 ) y1 4/3) 2 1 - 2(15

from which

il \o, 3+) (v1 + v2) - v2  (176)
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Similarly, if i1 > 0, we obtain

il = ( 6 i) (vl + i v2) - v2 (177)

These two equations for i1 can be combined to yield

,0) [(0, 3/) (vl +v 2) "v

1 ,o) [(o, V2

+ ( 0,1) + L vk2 ) -v (

Given values of v, and v2 , Eq. (178) is useful for computing il, but

the equation does not reveal the nature of the piecewise-planar surface

that i represents. Determination of the breaklines of this piecewise-

planar surface will greatly aid in its visualization. The breaklines in

the v -v 2 plane can be related to the breaklines in the i 1 -i 2 plane. To

find the breakline that corresponds to i I = 0, we set 1 equal to zero

in Eqs. (172) and (173) and solve for the relationship between v2 and v1 .

With i - 0, Eqs. (172) and (173) reduce to

V 1- (o' 12) (i 2 ) and v2_ (0, 3/2)(12)
0,1/2 0, 2

Eliminating i2, we obtain

v0/2 0 (v) = ( (v1 ) (179)
2 0,3/ (1 O2/ \ 3)

Similarly, for the other breakline, substituting i1 + i 2 = 0 into

Eqs. (172) and (173) yields

V_ (o, l)1 1
(0, 1/2

v2 = 2 = -i I

- 116 -



from which

v2  (, (Vz) (180)
\o -2)

Eqs. (179) and (180) represent breaklines which divide the vl-v2 plane

into four regions as shown in Fig. 48b.

We next consider an example of a PWL T-network in which RI, R2, and

R3 are all PWL. If

), 2/ R2 -(O-1/2) 4  R3 =)3

Eqs. (165) and (166) become

Vim (0., ) (i + (-3, 2) (i 1 + 1i2)(8)

t 0j 1/2 (i + 3: 2 ( 1 + 1 (182)

The breaklines for v1 are i1 = 2 and iI + i 2 = 3, and

the breaklines for v2 are i = 4 and i + 12 = 3. These breaklines di-

vide the i1 -i2 plane into seven regions as shown in Fig. 49a. Even

though we cannot solve Eqs. (181) and (182) directly for i1 and 12, we

can use these equations to solve for the breaklines of iI and i2 in the

Vl-V2 plane. If we substitute iI = 2 in Eqs. (181) and (182) and then

apply the shifting rule, we obtain

v1=2 + (3, 2 (2 +i12 )= (3,21) (i2) (183)
(0P 1)P

v2 = 1/ (i2) + , 1 ()i2  = 2 3/ (i2) (184)
-1 2, O
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Solving Eq. (183) for i 2 and substituting in Eq. (184), we obtain

S3/ (vl )
3/22-/2, 4 1 K 4' ,, 3 v2

0, 2 8

This equation represents the breakline in the vl-v2 plane that corres-

ponds to the breakline i1 = 2. Similarly, the breaklines that corres-

pond to i I + i 2 = 3 and i 2 = 4 are respectively

/ 7 , -1 11/3,9 2/3 ) \v= 6, -1/2 (v1) and v2 = 4, 1/2 (v1 )
17/2, -1 8/3, 2/3

These three breaklines are plotted in Fig. 49b. The seven regions in

the v1 -v2 plane are numbered to correspond to the respective regions in

the i-i 2 plane. One can think of Eqs. (181) and (182) as mapping the

breaklines in the i1 -i2 plane into the corresponding breaklines in the
vl-v2 plane. Figure 49b also represents a top view of a plot of il or

12 as a function of vI and v2 . The equations for each of the seven re-

gions can be solved individually if desired. For example, in region one,

i I < 2, i2 > 4, and i1 + i 2 < 3, so Eqs. (181) and (182) reduce to

vI = i1 - 3 + 2 (i1 + i2)

v2 = -2 + i2 -3 + 2 (i + i 2 )

from which

i1 = 0.6v - o.4 v 2 - 0.2

i 2 = - o.4 vI + 0.6 v2 + 1.8

These equations are valid for v2 in the range

11/3 + 2/3 vi < v2 < 7 -v i
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Similar calculations can be carried out for the other six regions. Al-

though we were unable to determine the solutions for i1 and i 2 directly

in terms of NL operators, PWL operators were still useful for determin-

ing the breaklines of these solutions.

C. EXPANSION OF PIECEWISE-PLANAR FUNCTIONS IN TEMS OF PWL OPERATORS

When we tried to solve Eqs. (181) and (182) simultaneously for il,

we were unable to find a solution directly in terms of PWL operators;

therefore, it was necessary to determine the breaklines first and then

solve for each section separately. We know that i1 is a piecewise-

planar function of vI and v2, but it is not obvious that this function

can be expressed in terms of PWL operators. In general, we would like

to determine what class of piecewise-planar functions of two variables

can be expressed in terms of PWL operators.

Stern [Ref. 5, pp. 59-63] gives a method for expressing any+ single-

valued piecewise-planar function of two variables in terms of 0'- trans-

formations. The piecewise-planar surface is first broken down into a

sum of pyramids, each with a vertex on ne of the breakpoints, and then

each pyramid is expressed in terms of 0-transformations. We have shown

in Section II. E. that any PWL function which can be expressed in Stern's

notation can be converted to PWL-operator notation. It therefore fol-

lows that any single-valued piecewise-planar function of the two varia-

bles can be expressed in terms of PWL operators. The method for finding

such an expression is somewhat devious and the resulting expression is

somewhat cumbersome to work with, but at least such an expression always

exists.

As an example, consider the piecewise-planar surface whose break-

lines are shown in Fig. 48b. Since this surface has a single breakpoint,

it can be written directly in Stern's notation as

=[2/3 (vl- v2, 3/4 (vl - 1/3 v2), (v- v2)' 6/5 (vl - 1/3 V2§10+

(185)
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Using Eqs. (22) and (A-5) to convert to WL operator notation, we obtain

[(o o I V 1 + v2 ) + (. vl - . v2 )

+ 5, (v v1 + 0 v2 ) + (v v2)

Ioo : (0, 0 (0° (1

-- 1 0, 6/5) (vl + I v2) " o, 3/4 (Vl+vj

+ ) (vl + v2) -v2  (186)
\0, 3/4

This expression is more complicated than Eq. (178) which was obtained

more directly by solving Eqs. (172) and (173).

D. PIECEWISE-PLANAR OPERATORS

In the previous section, we showed that any single-valued piecewise-

planar function can be expressed in terms of PWL operators. As seen

from the example, for even a simple piecewise-planar surface, the result-

ing expression may be very complicated, and the expression which repre-

sents a given piecemise-planar function is not unique. Furthermore,

there is no simple and direct method for writing down a PWL-operator ex-

pansion of the function from its graph.

For the above reasons, it would be desirable to define piecewise-

planar operators to represent piecewise-planar functions more directly.

If a suitable piecewise-planar operator, 'If , could be defined, we

could write the characteristics of a PWL two-port in the form

v (187)2 12 )2

Algebraic operations with piecewise-planar operators could then be de-
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fined by analogy with PWL operators. For example, in terms of the in-

version operation, Eq. (187) could be solved for the currents in terms

of the voltages in the form

12 v2(188)

Several attempts have been made to define piecewise-planar operators,

but no really satisfactory method was discovered except in the special

cases where all of the breaklines are parallel or all of the breaklines

meet at a single point. A basic difficulty is encountered in trying to

extend the PWL-operator concept to the piecewise-planar case. A linear

segment of a PWL curve can be adjacent to only two other segments, but

a planar section of a piecewise-planar surface can be adjacent to any

number of other sections. This limitation makes a simple extension of

the PIL operator notation impossible. Determination of a satisfactory

method for generalizing PWL operators to the case of two or more inde-

pendent variables is one of the important unsolved problems in PWL-

network theory.
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VII. ANALYSIS OF ELECTRONIC CIRCUITS

PWL operators are useful in the analysis of electronic circuits.

For large-signal operation, the characteristics of diodes, vacuum tubes,

transistors, and other electronic devices can be approximated by PWL

characteristics and described in terms of PWL operators. Since a number

of diode-circuit examples have already been presented, in this chapter

we will analyze several vacuum-tube and transistor circuits.

A. TRIODE CHARACTERISTICS

Figure 50a shows a PWL approximation to the characteristics of a

triode. If a three-dimensional plot of ib as a function of eb and

e is made, the breaklines divide the eg-eb plane into three regions

(Fig. 50b). In the cutoff region, ib = 0; in the normal-operation

region, ib = (eb + eg )/r p; and in the saturation region, ib - e r.

A PWL triode model [Ref. 2, p. 227] that has these characteristics is

shown in Fig. 50c. When D1  is off, ib = 0 and the tube is cut off.

When D is on and D2  is off, the tube is in the normal operating

region. When D and D2  are both on, ib a e/rs and the tube is

saturated. D 3 and r have been added to the model to account for the

grid current which flows when e > 0.g
We will now derive the PWL-operator equations that represent the

characteristics of the PWL triode model. We can redraw the PWL model as

shown in Fig. 50d by transforming the dependent voltage source to a cur-

rent source. From the equivalent model,

fo, o\ . +(eb
ebib - + b (189)

O,r-r r )(Orsp s(i)

We will solve this equation to obtain ib as a function of eb and

eg . If ib > 0, Eq. (189) reduces to

eb ) + r i (189a)
br-r p rs s b
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Multiplying both sides of this equation by 1/r s  and then subtracting

eg/(r - rs) , we obtain

(egu + (ib~hr- s

= - (190)
0O, rp/rs  ps

Solving for ib and then subtracting e 1 r from both sides, we obtain

ib r o I r rr srr r" 0O r \/r e ( pe. p

O 0, 0

r8, -- i -s p

p

This equation can be rewritten in the form

(b + 4eg)- + e (192)

When this expression is positive, it gives the correct value of Lb.

To prevent ib from going negative, we premultiply by (0,

The resulting expression for the plate current in the NWL triode model

is I

) (e + leg) - + e s (193)
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and the grid current is

(0 O: (eg) (194)
at = ,, i/r o)

B. TRANSISTOR CHARACTERISTICS

Using the PWL model of Fig. 51, the characteristics of a transistor

in the grounded-base connection can be represented by the equations

.eb = 0" Or) (ie) + rb (ie + ic) . ) (ie)+rbic0.b , r e  c (O, r e+rb  (195
(195)

and 0, rc\

Vcb M 0 e) (I c+ ai)+ (i +i (196)

(( r+r )(c + a) + rb (l-a) ie (196)
O, rb  ae

Replacing ie with -(ib + ic) in the above equations, we obtain the

equations which describe the grounded-emitter transistor model of Fig.

52a as

vbe = V b M (O,+ id+r i

v rV + e c) +  [ic - a (ib + ic)]ce "Vcb be \O, (OP (198)

Equation (198) can be rewritten in the form

0 e (i + i ) + (ic - bi) (199)
Vce O, b c O,
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C. TRANSFER CHARACTERISTIC OF A TRIODE FEEDBACK AMPLIFIER

As an example of the analysis of a vacuum-tube circuit, we will de-

termine the voltage transfer characteristic of the triode feedback ampli-

fier of Fig. 53. We will use the PWL model of the triode (Fig. 50)

with the following values of tube parameters:

rp = 5 k, 1 = 20, r s = 0.1 kQ, and r = 500 klP 5 g

Substituting these values into Eqs. (193) and (194 we find that the

tube characteristics are given by

ib= / / ( 4 eg - 9.8 eb) + 10 eb (200)

/op o\

ig -- (eg) (201)
O, .002

Since the 100-kQ feedback resistor is a negligible load on the plate

circuit, we can write the following node equations for the network:

200 - eb (202)

and

+ bi (203)
g I 1000 1000

Combining Eqs. (200) and (202) and Eqs. (201) and (203) and simplifying,

we obtain (o~0 [/ol 1
(200 - eb) = / (4e - 9.8 eb ) + b (204)

+

* Stern [Ref. 5, pp. 23-25] analyzes this same network using 0-trans-
formations. The amount of work required by the two methods is about
the same.
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and

e - 3e+ (e) eb m (e ) -%

(205)
+20 v

5k
I 000k

b1 b +

I000k Ib

0-

FIG. 53. TRIODE FEEDBACK AMPLIFIER.

Equation (204) can be solved for e as follows. Premultiplying by

g

l 5) " , ap p lying the shifting rule, (Eq. (59), and subtracting

10% yields(o,° .L (/o %00L , L\. o
O- )- 2L (%) .- (Op1 (4eg-9.8 b)

0, .2/ \40, 10.2/ \0.,0/

Premultiplying by 0, and adding 9.8 eb gives

200L.. L
(0, (200 L, L

0, L), . ('eb) + 9 .8 eb 40, 0.4 (-e) e40L, 10.2L)
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Solving for e and substituting into Eq. (205) we obtain

150L, 0.75L
, o 50L, .251, 30., 1.3

e 1 Q15) (1 . (-e b) -e 01 1.5 (-e b)
OL, 2.55L/ 50L, 12.75L

Solving for eb and letting L m, the desired transfer characteristic

is

200, 0

_ 300/13, -10/13

eb- 100/3, -2/3 (ei) (206)

200/151, 0

D. TRANSFER CHARACTERISTIC OF A TRANSISTOR AMPLIFIER

As an example of analysis of a transistor circuit, we will derive

the voltage transfer characteristic of the grounded-base transistor am-

plifier of Fig. 54a. Using the PWL model of Fig. 54b, the amplifier can

be described by the equations

0(ie) bc (20T)
Vl , Re+rb ci()07)

v2  E (ic + aie) + rb (i + i) -i R
E, c cc (207)

Equation (207a) can be rewritten in the form

(' r+R (i + ai) m[(a - .) rb + a ie

E$ r+ c ) c e) -[(a

Solving for i the current transfer characteristic is

± (~!' -rb i
kyR' b+R/

b - rb
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from which

ER

V2 - -Rc c ( e)

ERc rbRc

rb+cr +Rb c)

Solving this equation for ie  and substituting in Eq. (207), we obtain

- E 1

0, L c -v

v 0 (v 2 ) + rb ( )

b bc
-E L
-E-, W-

"(R e+rb)E Re+rb rb v)

A L "" - - R 2

-(Re+rb)E (Re+r b ) (Rc+rb ) rb

rb rbRc R c

Solving for v2 and letting L . , we obtain the voltage characteristic

(Fig. 54c) as

0 , 0

e.R
V 0= (v (208)
2  R e +(l.a)r b(8

Rc(Re+rb) E rbR c

R (r +Rc)+rR '
e bc)b c Re(rb+Rc)+rbRc
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E. SERIES-TRIODE NEGATIVE RESISTANCE CIRCUIT

We will now determine the input v-i characteristic of the two-triode

circuit shown in Fig. 55a. Each triode is replaced with a PWL model as

shown in Fig. 55b. The grid voltages are

eCg - Rk 2  e g2 m _Rk(1 2 - l)

Since the sum of the voltages around the loop is zero,

F/0, L
E = Lrp + R + iRk + (i 2 - 1 )

+ [ + Rk+PRk+ ( L) ( 2)  (209)

The input voltage is

v M + Rk+ (i 2) + 'R ('2 - l)  (210)
[rp~ (0.,0) 1 (20

If we let Rm rp + + k and then rearrange the terms, these equa-

tions become

'0,: R 1) 1o, ±)
E -- L) - + (i2)  (211)

0, RO0,R

and

v L) (12 ) - i (212)
0, R

From Eq. (211),

2 - E L)
0., L)-E, R
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Solving for il, we obtain

/0 lI )R a  -E/R, 2 (i2)

L)~ Koi(-EE ) -E/R, 1 2)S-E/L.,
We next solve for i2 and substitute in Eq. (212), which yields

E/L, R/L ( E,,
01 0,

V /2R,.12 (l - 4R.kil= E/20,R/2 )(il) -4Rki'l

Replacing R with r. k + P k  in the above equation, we find the in-

put v-i characteristic to be

E, rp + Rk

Rk( -i) (i) (213)

O, rp + Rk

This curve is plotted in Fig. 55c for the case Rk (p-l) > rp
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VIII. ENERGY STORAGE ELEMNTS IN PWL NETWORKS

Until now, we have considered only resistive PWL networks without

energy-storage elements. In this chapter, we will attempt to extend the

usefulness of PWL operators to the analysis of networks that also con-

tain linear or PWL capacitors or inductors. By a PWL capacitor, we mean

a capacitor whose charge-voltage characteristic is PWL. If we represent

this characteristic by the PWL operator C, then the current through the

capacitor is

i L [c(v)]

By a NL inductor, we mean an inductor whose flux-linkage - current

characteristic is PWL. If we represent this characteristic by L, then

the voltage across the inductor is

v . o . [L(i)]dt at

INL inductors and capacitors are useful as approximations to nonlinear

inductors and capacitors.

A NWL R-L-C network can always be solved on a section-by-section

basis. At any instant of time, the network reduces to a linear network.

The solution to the linear differential equations of this network is

valid until one of the INL elements changes state. When the network

contains several PWL elements, we must solve for the voltage or current

in each one in order to find out which element will change state first.

After the change of state, we have a new linear-network problem and a

new set of linear differential equations to solve. The constants in the

solution can be obtained by matching boundary conditions at the time of

transition from one section to the next. This matching process will

generally require the nuerical solution of transcendental equations.

This section-by-section method is usually very tedious and time-consuming

to carry out.

An attempt has been made to develop more efficient methods of solving

PWL networks that contain energ-storage elements. By using PWL operators,

a problem can be formulated in terms of PWL differential equations. For
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PWL R-C, R-L, and L-C networks, the solution to these PWL differen-

tial equations can be expressed in terms of PWL operators. An efficient

method of obtaining the solution has been derived for the PWL parallel

R-C network.

A. PARALLEL R-C PWL NETWORKS

In this section, we will develop methods for analyzing the parallel

R-C PWL network of Fig. 56. Either the resistor or capacitor, or both,

may be PWL. By duality, the methods developed here can be applied to

the series R-L network.

The voltage across the parallel R-C network satisfies the differen-

tial equation

d [C(v)] + R-1 (v) = 0 (214)
at-l

where C(v) is the charge on the capacitor and R"I (v) is the cur-

rent through the resistor. We will assume that when t = 0, the capaci-

tor is initially charged to a positive voltage v . If the capacitor is

linear, Eq. (214) reduces to

cdv R-(v) = 0 (215)

We will show that if R is monotonic, Eqs. (214) and (215) have solu-

tions of the form

v = R[eB(-t) (216)

B
Taken by itself, e does not have any meaning; therefore, to evaluate

Eq. (216) for a given value of t, we must first find a - B(-t),a
then calculate b = e , and finally find v = R(b). The current in

the resistor is given by

(v) =B(-t) (217)
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FIG. 56. PARALLEL R-C PWL NETWORK.

We will now attempt to determine B so that Eq. (216) satisfies

Eq. (214) and the initial condition v = v . Substituting Eq. (216)

into Eq. (214), we obtain

d [CR(eB(-t))] + eB(-t) 0 (218)

The indicated differentiation causes same difficulty because the deriva-

tive of a NL function is not continuous. We will let

a, _ b , 
c j, d 1

a n , b -' n ,

n n n ai

be monotonically increasing PWL operators, where the breakpoints of A

are designated by xl, x2 , ... ,x. 1 and the inverse breakpoints of B by

Yl'y20"""'Yn-l" If some of the x's are negative, enough of the sec-

tions of CR should be discarded so that only positive x's remain.

Applying the rule for differentiating a function of a function, we

obtain

d (A[eB(-t)]) - A'[eB( ' t)] x L [e B (  ] (219)

* This procedure is Justified because in Eq. (218) CR operates on

e B -t ) , which is always positive.
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where the prime indicates differentiation with respect to the argument

of the function. For the jth section of A,

A[eB(-t) ]= a + b eB(-t)

from which

AI[eB(-t)] = b

Since the slope of a PWL function is discontinuous, the derivative of

A is a Jump function of eB( ' t), as shown in Fig. 57a. The jups oc-

cur at the breakpoints of A. For the jth section of B,

B(-t) =e(cj - d t)

from which

d eB(-t) (c d jt) B(-t)

Since the value of d changes at each breakpoint of B, this deriva-
j thtive is also discontinuous, as shown in Fig. 57b. At the j break-

point of B, eB(t) has the value e (Yj.

Substituting Eq. (219) into Eq. (218), we obtain

Ae [ B ( dt ) ] x L [ e B ( -t ) ] - B(-t) (220)

tht

For the jth section, Eq. (220) becomes

b x -d eB(-t) = 
B ( -t )

from which

dj = 1/b (J - ,2,....,n) (221)

Since

b #i b j+d and d A dj+1, if b d =1 , then
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d+A1 and b 1 dA. Therefore, in order that Eq. (220) be satis-

fied for all values of e - the breakpoints must match as indicated

in Fig. 59 , which implies that

xj= e y" C = 1,2,...,n-1)

from which

y c dj+1  - dJ =d njxJ (222)
- dj+I - dj

I I e (-t))

bft

b2

bil

SII
II I

e X 1 1 X 3 1 X : !, n - II t1 '  t

I I

(b) 
5

FIG. S7. DERIVATIVES OF P11 FUNCTIONS.
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Solving for c, . we obtain

c (d +l " d ) in x- + cJ+l d (J = 1,2,...,n-l)
I J+1 (223)

Assuming that v is chosen so that the initial state of the network0

lies beyond the last breakpoint,

vo W =ReB(O)] q + raecn

where q. and rm are the intercept and slope of the last section of R,

from which

c -in ( (224)

We have now determined the unknown PWL operator, B. The d's are given

by Eq. (221) and, after Eq. (224) is used to find cn , Eq-. (223)

can be used as a recursion formula to find the remaining c's.

We will illustrate the above procedure for analyzing the parallel

R-C INL network by two examples--one with C linear and one with both

R and C PWL. If C= 1, v 6., and

-1, 1

0, 1/2 2

R = -6, 2

3/2, 1/ ) 5

then A =R and

c 10 1

Bm 
c 2 , 2

c3 , 1/2

c4, 2
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The c's are determined from Eq. (224) and (223) as follows:

c4 = n 6 "3/2)= 2.1972

c (2-J) In5 + i c4  = 1.7564
2

(J-2) In4 + 2c 3- 2.8667

(2-i) 8n2 + c
cI = _______= 1.7799

2

The voltage is then given by

-1, 1 /.7799,

V 6, 1/2 exp 1.76, (-t) (225)

3/2, / 2.1972, 2

This solution means

v=3/2 + j exp (2.1972 -2t) = 3/2 + 9/2 e
2 t (0 < t < tl)

v = -6 + 2 exp (1.7564 - it) = -6 + 10 exp [-(t-t1)] (tl < t < t 2 )

v = exp (2.8667 - 2t) = 1 exp [-2 (t-t) (t2 < t < t3)

v = -1 + exp (1.7799 - t) = -1 + 2 exp [-(t-t 3)] (t3 < t)

where tI = 0.2939, t2 = 0.7402, and t3 = 1.0868

These results can be checked by solving the problem on a section-by-

section basis and matching boundary conditions at each transition.
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As a second example, we will take v - 5,

0, 1/2

C(-l, 1/2)

and

R = -,2

1,

from which 0, 1/2

-1/2, 1 1

A aCR= -2, 2 / 2

0, 1 )2

3/2,, 1/2 3

After calculating B from Eqs. (221), (224), and (223), we can write the

solution in the form

3.0602, 2
/0, 1\ 1.5301,. 1

v 1.-, 2 exp 0.9678, j (-t) (226)

(1, 1) 1.2425, 1

L1.3863, 2

Equation (226) is equivalent to the set of equations

v = 1 + exp (1.3863 - 2t) = I + 4e"  (0 < t < t)

v= I+exp(1.2425 -t) = l+ 3 e" (t ' tl) (t 1 <t<t 2.)

v = -1 + 2 exp (0.9678 - it). -1 + 4e'(t-t2) (t2 < t < t 3 )

v = -1 + 2 exp (1.5301 - t) = -1 + 3e(t't3) (t3 < t < t 4)

v = 0 + exp (3.0603 - 2t) - e-2(t-t4) (t4 - t)
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where

t1 = 0.1438 t2 = 0.5493 t - 1.1246 t4 = 1.5301

The principal advantage of using PWL operators instead of conventional

methods in these examples is not that the total amount of computation is

appreciably reduced but rather that the work is much more systematic.

B. GENERAL PWL R-C NETWORKS

In this section we will attempt to generalize the method used to

analyze the parallel PWL R-C network to more general PWL networks that

may contain any number of PWL resistors and capacitors. We will show

that the voltages in such networks can be expressed in the form

If all of the PWL R's and C's have finite, positive slopes, at any in-

stant of time the network reduces to a network composed of linear resist-

ors and capacitors and d-c sources. Therefore, during any interval of

time, the voltage at any point in the network must consist of a sum of

decaying exponentials plus a d-c term. The voltage at any point can

therefore be described by the equations

m

v = ajk exp (-bjkt) + aok (tk-1 < t < tk)

jo1 (228)

(k = 1,2,...,n)

Since all of the currents in the network are finite, none of the volt-

ages across the capacitors can change instantaneously, and all of the

voltages must be continuous at the transition points, i.e.

* The results of this analysis can, of course, be applied to the general
PWL R-L network through the use of duality.
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alk exp (-bjk tk) + ak aJ,k+ exp (-b j,k+l tk) + so,k+l~j =l J al

(k - ,2,...,n-) (229)

We will now show that Eq. (228) can be expressed in the following

form:

q 2 ' rJ2  exp Cj2 dJ2  (-t) (230)

in ja jn Jn

During any interval of time, Eq. (230) reduces to

m=Z [q1k + rlk exp (clk - dik t)] (tkl < t < tk) (231)

J-1

where

cj k+l " cAk  (232)
k  djk+l d jk

In order that Eq. (231) be equivalent to Eq. (228), the following rela-
tions must hold for all J and k :

bjk a d (233)

ajk n rjk exp (cjk) (234)

m

aok =Z qjk (235)

J-l

For k - J, we can satisfy Eqs. (234) and (235) by taking
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qll = ao1 q3 = 0 (j > 1) (236)

c A = 0 (all J) r j = a j (all J) (237)

Once we have chosen cjl , the remaining c j's must be chosen so that

Eq. (232) is satisfied, i.e.,

cj,k+l = (dj,k+1 - djk) tk + cjk (k = 1,2,...,n-l) (238)

Since the transitions between successive sections of both PWL operators

in Eq. (230) must occur at the same time, the breakpoints must match;

this matching requires that

q j k + l -q jk .e x p ( c - d t e x p ( c 2 9rjk - rjk+l jk tk) = jk+- dJ tk) (239)

from which

qj k+l = rjk exp (cjk - djk tk) - rJ,k+l exp (cj,k+1 - djjk+1 tk)

(240)
+ qjk

We have now evaluated all of the q's, i's, c's, and d's in Eq. (230).

To verify the equivalence between Eqs. (231) and (228), the only thing

that remains to be done is to show that the q's defined by Eq. (240)

satisfy Eq. (235). Substituting Eqs. (233) and (234) into Eq. (240) and

then summing over J , we obtain

qjk~ Za j exp (-b j t k) -7a jk+l exp (- J~ t k) + q jk (241)
Ii J .1 .

By using Eq. (229), Eq. (241) can be reduced to

ZqJ,k+l = ( qjk - aok) + ao,k+l (242)
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If Eq. (235) is satisfied for a given value of k, it follows from Eq. (242)

that it is also satisfied for k+l . But from Eq. (236)

Z qJ1 ao1 , and Eq. (235) is satisfied for k 1 1. It therefore fol-

lows by induction that Eq. (235) is satisfied for all values of k

This completes the proof that the voltage at any point in a INL R-C

network can be expressed in the form of Eq. (227). This proof does not

provide a convenient way of determining the A 's and B Is, but it at

least shows the existence of a solution in terms of PWL operators.

The voltages in a NWL R-C network must satisfy a set of INL differen-

tial equations. From the above analysis, we know that the solutions to

these equations can be expressed in the form of Eq. (225). Hopefully,

we could substitute solutions of this form into the differential equa-

tions and then solve for the unknown PWL operators. Unfortunately, this

procedure does not work very well because the left distributive law can-

not generally be used and we encounter difficulties in differentiating

*the INL functions.

As an example, we will consider the network of Fig. 58. This net-

work can be described by the differential equations

dv1~+ (vl -v2) =0o (243)

dv2  0, ) 0 (244)
+N - vl) + (v2 )=0

i 1, 112

From Eq. (243),

dvI  dv2  d2v dv1+ v and 1 = + -+ (245)

v2 = F7 v 1  and d dt

Substituting into Eq. (244), we obtain
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d2vl dv (0 i\ v d2vI  (o, 3 dv
42 V, v 1 +(0, 1) dvl V . 1 0-53 dl+v 2d+ (31,12 (t' +Vl)= + 1,12 J v1 ) " -o

(246)

We will solve this PWL differential equation using the initial conditions

v, (0) = 0 v2 (0) = 6 1 (0) = .v2 ' (0) - v, (0) -6

From the previous discussion, we know that the solution can be expressed

in the form

Vl A1  (exp [B1 (-t)]) .+A 2 (exp [B2 (-t)]) (247)

T T G11/2

FIG. SO. PWL NETWORK WITH TWO CAPACITORS.

If we substitute Eq. (247) into Eq. (246)., we obtain a PWL-operator equa-

tion that we do not know how to solve. Our only recourse is to solve

Eq. (246) in sections. We can separate Eq. (246) into two linear differ-

ential equations:

2f + /2 + 1/2 v = -1 - + v, > 2, 0 < t < t

- + 3- + v1  0 t-+v <2, t>t 1t dt

These equations have solutions of the form
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v =c ec-0.2192t -2 2808t - 2 (0 < t < tl)

v2 = c3 • "0 " 382 0t + c4 •-2.6180t (tI < t)

We can evaluate c1  and c2  from the initial conditions and then deter-

mine t1 by solving the equation

.l (tl) + v, (tl) " 2

After evaluating c3 and c4 by matching values of *1 and v1  at

t z t i , we obtain

vI a 5.123e- 0 "2192t - 3 . 12 3e-2.2808t - 2 (0 < t < 0.8007)

vI = 2.978e "0 "38 2 t  - 3.239e-2. 6 18t (t > 0.8007)

This solution can be expressed in terms of PWL operators as

= 0.105) 2:614) Bl( tJ 0.(05,2473~ EB2(t
-2o, 5.123o,) [e .-31

where

1 (0.27 .
(0.13035, 0.382 27, 2618)0B O0.2192 ) 0, 2.2808

The derivative of v1  can be expressed in the form

dv= (-0.105.-0.999) EB t] + (0105 6.723) e-1t
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from which

dv1

v2 d + v1

= 1.615 ) [eBl(t I + 4eB2(t)

-2p 4

In this example, INL operators were helpful in formulating the differen-

tial equations of the network, but they were of no help in solving these

equations.

C. PWL L-C NETWORKS

A network that consists of a PWL inductor in parallel with a linear

capacitor (Fig. 59a) will now be analyzed. We will assume that the in-

ductor has a symmetrical flux-linkage - current characteristic as shown

in Fig. 59b. Assuming no damping, the circuit will oscillate continu-

ously if we start with an initial current in the inductor or an initial

charge on the capacitor. It can be shown that, during the first quarter

period of oscillation, the current, voltage, charge, or flux linkage can

be expressed in terms of PWL operators as

x - A1 [cos B(t)] + A2 (sin B(t)] (248)

Once the solution for the first quarter period is known, the rest of the

solution can be determined from symetry.

The flux linkage in the network of Fig. 59a satisfies the differen-

tial equation

c + F ( 0 (249)
dt

2

where F(0) is the current in the inductor. The PWL-inductor character-

istic of Fig. 59b is

(-27/4, (/ 3, 1
L ) 0, 4 i) or i 0,1/4 (0)= L (l o D o

3-, 
3, 1

27/4, 1/4 -27,
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As an example, we will find the solution to Eq. (249) using this charac-

teristic with c = 1, i(o) = 9, and v(O) - 0. For the first quarter

period of oscillation 0 > 0, and Eq. (249) becomes

+ -3, 1 (0) =o (250)
dt \27, 4

with 0(0)=9 and 0(0) 0

If we assume a solution of the form Eq. (248) and substitute into

Eq. (250), we run into the usual difficulties with the left distributive

law, so we will solve in sections. Equation (250) can be separated into

three linear differential equations

0 + 40 27 (8 < 0 < 9) (o < t < t)

0+ 0= 3 (4 <0<8) (t1 <t < t2 )

.0 + = 0 (0 < 0 < 4) (t2 < t < t 3 )

The solutions to these equations are

0 = 6.75 + 2.25 cos 2t (o<t<t1 )

0 = 3 + 5.8889 cos (t+t1) + 2.0787 sin (t+tl) (tl<t<t2 )

0 = 11.4226 cos (jt+t 1+ 2 ) + 6.1256 sin (it+tl+t 2 ) (t2<t<t3 )

where tI = 0.4909, t2 = 1.2585, and t3 = 1.8858. Expressing this

set of equations in terms of PWL operators, we obtain

6.5, 2.250 0

0 (4.7284, 5.8889 (cos B(t)! + -1.7284p 2.0787 (sin B(t))
5.7110, 11.4226 -5.7no, 6.12/
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where

0, 2 0, 2

B= t1 , 1 0.4909, 1

t 1 +t 2 , 1/2 1.1201, 1/2

This solution is plotted in Fig. 59c. The current during the first

quarter period is

(1 -3, (0)
7, 4

01,9 0, 0

1.7284o 5.8889 (cos B(t)] + -.7284p 2.0787 (sin B(t)]

11902.85571 .34

As in the general R-C case, INL operators are helpful in formulating

the differential equations and expressing the solutions to PVL L-C net-

works, but PUL operator methods are of little help in solving the equa-

tions. If we could define suitable complex PIL operators, it might be

possible to express the solution to the PWL parallel L-C network in the

form

x-W 9L(A[eB(t)

and it might be easier to find A* and B* than to find A1, A2 0, and

B in Eq. (248). The fact that solutions to general PWL R-C, R-L, and

L-C networks can be expressed in terms of PWL operators holds promise

that better methods of solution can be developed.
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IX. COMPUTER PROGRAMS FOR SOLUTION OF PWL OPERATOR EQUATIONS

The methods for representing PWL curves by PWL operators and the

algebraic operations with PWL operators have been developed with the use

of a digital computer in mind. Although the PWL-operator method is use-

ful for hand computation in simple problems, the method is cumbersome

for complex problems unless a computer is used. Where iterative solu-

tions are required, a computer is almost imperative because of the large

amount of work involved.

Computer programs have been written for the Burroughs 220 Computer

for analysis of resistive PWL networks. Subroutines have been written

for addition, subtraction, multiplication, inversion, trivolution, and

other operations with PWL operators. These subroutines have been used

in programs for solution of PWL-network equations.

A. A BRIEF DESCRIPTION OF BAIGOL

The PWL-operator programs are written in an algebraic language called

BALGOL, which is the Burroughs version of AIGOL. The BAIFOL program con-

sists of a series of statements, which are punched on cards and read into

the computer. The compiler program for the computer translates these

statements into machine-language instructions. After compilation, the

data are read into the computer and the program is executed.

Several types of statements are used in the BALGOL program. The

assignment statement causes a variable to be set equal to the value of a

given expression. For example,

X - (A + B.C)/(D + E*2);

means compute the value of (A + B.C)/(D + E2 ) and then set X equal to

this computed value. Note that the equal sign does not have its usual

meaning here. The same variable may appear on both sides of the assign-

ment statement. Thus, X = 2X + 1; means compute 2X + 1 using the

present value of X, and then change the value of X to this new value.

The IF statement indicates that the next statement in sequence is to be

executed only if a given condition is true. For example,
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IF A LEQ B; S;

means that statement S is to be executed only if A < B. The FOR state-

ment causes the next statement or group of statements to be executed a

given number of times. For example,

FOR I = (1,l,N); S ;

means that statement 8 is to be executed for I = 1, then for I a 2,

then for I = 3, and so forth, and finally for I = N. A statement may

be labelled by preceding it with an identifier or an integer followed

by two dots, e.g.,

A13.. ;

attaches the label A13 to the statement 5 . The statement

GO A13;

causes the statement labelled A13 to be executed next. For further in-

formation about BALGOL, the reader should consult the manual for the

Burroughs Algebraic Compiler (Ref. 8].

B. SIMPLIFICATION OF FWL OPERATORS

After two PWL operators have been added, subtracted, or multiplied,

if the answer has two successive sections that have the same slope and

intercept, one of the sections is redundant and must be eliminated.

Simplification of PWL operators by elimination of redundant sections is

also an important step in the iterative solution of PWL-operator equa-

tions. As the iterative solution of a PWL-operator equation is carried

out, the order of the PWL operator in the approximate solution tends to

increase with each iteration. However, as the iteration continues,

some pairs of successive sections of the PWL curve will generally ap-

proach the same line segment. When they are sufficiently close, one of

the sections can be eliminated, and so reduce the order of the P%
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operator. Other sections of the PWL curve will eventually become shorter

and shorter, and they can also be eliminated. Proper convergence of the

iteration may depend on the criterion used for elimination of redundant

sections. If the elimination occurs too soon, the accuracy of the solu-

tion is impaired and the iteration may not converge to the correct value.

If the elimination occurs too late, the order of the PWL operators be-

comes too large and much unnecessary computation is required.

Two methods for eliminating redundant sections of PWL operators were

tried. Using the slope-intercept form, the kt h section was eliminated

if the differences between the kth slope and the (k+l)t h slope and be-

tween the kth intercept and the (k+l)t h intercept were sufficiently small.

This method proved to be unsatisfactory because very short sections were

not always eliminated. It is better to use the breakpoint form and to

eliminate the kt h breakpoint when the distance between this breakpoint

and the line joining the two adjacent breakpoints is sufficiently small.

The ratio of the perpendicular distance between the point (xk,Yk) and

the line joining the points (xk-l'Yk-l) and (xk+lyk+l) is

I'k (yk+l - l -1 Yk (xk+l - xkl1) + )ck+l Yk-l - )ck-l Yk+l

I (xk+l - 'k-1) + (yk+l - Yk 12

If s is less than a prescribed value of e, the point (xk, Yk) is

sufficiently close to the line and is deleted.

Both the slope-intercept form and the breakpoint form of PWL opera-

tors were tried for computer analysis of PWL networks, and it was de-

cided to use the breakpoint form for the following reasons:

1. When iterative procedures are used, simplification in terms of
breakpoints works better than simplification in terms of slopes and
intercepts.

2. The inversion operation is easier and faster.

3. Scaling is easier in the breakpoint form since a very large range
of slopes must be accomodated in the slope-intercept form.

4. Since the output is in terms of points instead of slopes and inter-
cepts, it is easier to plot the results.

5. In breakpoint form, no special code is needed to distinguish the
various types of PWL operators.
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C. SUBROUTINES FOR WORKING WITH PWL OPERATORS

The BALGOL subroutines that were written for manipulating PWL opera-

tors on the Burroughs 220 Computer will now be discussed. A complete

listing of these subroutines is given in Appendix C.

TABLE 2. BASIC SUBROUTINES FOR PVL-OPERATOR ROUTINE.

SUBROUTINE
NAME FUNCTION OF SUBROUTINE INPUT PARAMETERS TO SUBROUTINE
IMP Read a PILO from data cards 05 u loc. where PWLO is to be

stored
PRT Print a PWLO GS loc. of PWLO to be printed
TFR Transfer a PWLO from one 0I old oc.° of PIO

loc. to another H I nw1cof PWL0
INV Invert a PWLO: D = A" 01 loc. of A

H •loc. of D (H 0 01)

ADD Add 2 PWLO's: D 0 A + B 01 *loc. of A (GI )
SUB Subt 2PWLO.: 02 loc. of B (02 R)SUB Subtract 2 OD A -B H • l o c. of D

MUL Multiply 2 PWLO D: JD AB r

ABC Trivolve 3 PWLOa: 01 l oc. of A; 01 : lc. of B
= A3*C G3 loc. of C; N loc. of D

ADDI Add identity operator to a
01 - boc. of A

SUBI 'Subtract identity oerator H • lo c . of D
from a PWLO: D - I

COUP Compare A and B G1 loc. of A; G| • loc. of BEPS$ 0 sllowabl diff. in
y-coordinatee

TABLE 3. AUXILIARY SUBROUTINES FOR PUL-OPERATOR ROUTINE.

SUBROUTINE NAME FUNCTION OF SUBROUTINE

ASd Used by ADD, SUB, and MUL subroutines to com parebreak point. of A and B and to compute the break-
points of A.

SIMPLIFY Eliminate redundant points from a PILO.

ORD Test a PILO to see if the rowe are in standard
order.

REORD Reorder a PWLO if it is not in standard order.

SET Compute array locations of A, B, and D.

SHIFT Used by subroutines TFR and INV to relocate a
PWLO.
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An array of 3200 words in the computer memory is allocated for stor-
th

age of PWL operators. An n -order PWL operator in breakpoint form re-

quires 2(n + 1) words of storage, so a maximum of 16 PWL operators of

order 99 or less can be stored in this array. The location of each PWL

operator in the array is designated by an integer from 1 to 16.

Since the space occupied by a PWL operator is variable, an additional

array of 16 words is provided to store the size of each of these PWL

operators.

The basic subroutines which have been written for working with PWL

operators are described in Table 2. To use one of the subroutines, the

programmer specifies the values of the input parameters followed by the

statement ENTER NAME; where NAME is the name of the subroutine. For

example, to multiply the PWL operator in location 2 by the INL operator

in location 5 and store the result in location 8, the following calling

sequence is used:

Gl = 2; G2 = 5; H = 8; ENTER MUL;

The auxiliary subroutines listed in Table 3 are used by the basic sub-

routines and are not used directly by the programmer.

1. Input and Output

The PWL operators that are to be used as input to the program are

listed on data cards in breakpoint form in the following format:

N o x0 yo 'I yl " '" ' Yn

where n is the order of the PWL operator and N = n + 1 is the number

of rows. The calling sequence

G5 = L; ENTER INP;

is used to read in a PWL operator and store it at location L.

To print the PWL operator which is stored at location L, the fol-

lowing calling sequence is used

G5 = L; ENTER PRT;
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The output appears on the line printer in the following format:

COUNTN x Yo xi Yl X2  Y2  x3  Y3

x4  Y4 x5  Y5  x6 Y6 x7 Y7

x- 1 Yn-1 n yn

COUNT is an integer used for identifying the output.

2. Inversion

To invert the PWL operator stored at L and store the inverse at

L2, the calling sequence

G1 - L; H = L2; ENTER INV;

is used. The inversion process is easy to carry out on the computer

since it is necessary only to recopy the PWL operator with the x's and

y's interchanged. After recopying. if the INL operator is not in stand-

ard order, the order of the rows is reversed by interchanging xO and

Yo with xn and yn, x, and y1 with xn. 1 and yn-11 etc.

The subroutine ORD is used to check the order of the rows. This

subroutine first computes r1  and rn, the slopes of the initial and
final segments. If xI < x and rI > rn or if xn_1 < x and

r < rn, reordering is required.

3. Addition, Subtraction, and Multiplication

The subroutines for addition, subtraction, and multiplication of

PWL operators have a large section in common, so they will be discussed

together. These subroutines will handle multi-valued as well as single-

valued PWL operators. The flow chart for these subroutines is shown in

Fig. 60. The numbers and letters enclosed in trapegoids refer to labels

in the program. The PWL operators being added, subtracted, or multiplied

are referred to as A and B, and their sum, difference, or product as

D. The coordinates of the Jth breakpoint of A are designated by XAj
th 1l

and YAj, the coordinates of the K breakpoint of B (of B "  if
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multiplication is being carried out) by XEK and YBK., and the coordi-

nates of the Lt h breakpoint of D by XDL and YDL. The subscripts J

and K can be indexed in either direction. Increasing J (or K)

corresponds to moving down the column in A (or B), while decreasing

J (or K) corresponds to moving up the column. The previous value of

J (or K) is designated by JP (or KP). The program operates in two

modes. The normal mode corresponds to moving to the right along the

PWL curves, and the reverse mode corresponds to moving to the left. The

number of rows in A is NA and the number of rows in B is NB.

After the locations of the NWL operators in the array have been

computed, the variable OP is set equal to 0, 1, or 2 to indicate

addition, subtraction, or multiplication respectively. The mode and di-

rections for J and K are initially selected according to Table 4.

If down is selected for J (or K), J and JP (or K and KP) are

initially assigned the values 1 and 2 respectively. If up is

selected, the values NA and NA-l (or NB and NB-l) are assigned

instead. When an attempt is made to add, subtract, or multiply two PWL

operators that are incompatible, the problem is rejected, and the error

message, "REJECT," is printed. The main loop of the subroutine, which

begins with the block labeled COMPARE, is traversed repeatedly until

all of the breakpoints of A and B have been compared. The values of

XDL and YDL are computed using the equations shown on Fig. 60. Then

J, K, or both are increased or decreased as is appropriate, and a test

for corner points is performed. Whenever a corner is detected, the mode

of operation is changed. If A has a corner, the direction of K is

changed; and if B has a corner, the direction of J is changed. Then

L is increased, and before going around the loop again, a check is made

to see if the last section of either A or B has been reached. Since

the procedure used at the endpoints is different from that at the inter-

ior breakpoints, a different path is followed the first and last times

through the loop. The first time, a path labeled "FIRST = 1" is fol-

lowed, and the last time, a path labeled "LAST = 1" is followed. After

the last time through the loop, the answer is simplified by deleting re-

dundant points, and the order of the points is reversed if they are not

already in conventional order.
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TABLE 4. MODE SELECTION.

Mods J Direction K Direction

Type of Type of A Type of A Type of A
Be LN LL RL BB LBt LL RL BR LB LL RL RB

LR*" N N N B D D U D D D D U

LL N N N X D D U X D D D X

BL N N N B D D U D U U U D

RR B X B B U X D D D X D D

N - Normal B a Reverse D a Down U . Up X = Reject

When multiplication is being carried out, type of B1 is used instead.

See Table I for explanation of type designations.

4. Trivolution

The subroutine for trivolution uses a modification of the section

method described in Section IV. F. If A is in location I, B is in

L21 and C is in L the calling sequence

G. I, G2 -L2 ; G3 -L ; H -L 4 ; EN4TER ABC;

is used to compute D = A*B*C and store D in location L . As in

Eq. (93) (P. 79), Xk is computed for each section of C by the equa-

tion

x k - ((A - Ck) (B - c k ) -

where Ck  is the k
th section of C and ck Is the slope of Ck'

Rather than using Eq. (96) to combine the Xk'S to form the final solu-

tion, a faster method is used. After each Xk has been computed, the

appropriate sections of Xk, which lie between the (k-1) t h  and the

kt h breakpoint of C, are selected and combined to form D.

This procedure will always give the correct answer if D is

single-valued, but it may give the wrong answer if D is multi-valued.

Therefore, after D has been computed, the answer is checked by substi-

tution in the equation A(D + I) = BD + C. If the answer fails to check,

another attempt to compute D is made by interchanging B and C and
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using the equation

D - (A*C*B)
l

The correct answer is usually obtained on the second try unless D is

multi-valued in both directions. If the answer doesn't check the second

time, the problem is rejected and the error message "REJECT" is print-

ed.

5. Comparison of PWL Operators

When solving a PWL operator equation by an iterative procedure,

a test for convergence of the iteration is needed. The iteration can be

terminated when two successive approximations to the solution differ by

a sufficiently small amount. The calling sequence

al -hL; G2 -L 2 ; EUM flCOMP;

is used to comlae the PWL operator stored in location L1 with the one

stored in L. If the difference between the two PWL operators is within

the prescribed limit, the variable BCOMP is set equal to 1; otherwise,

BCO4P is set equal to 0. This variable can then be tested to determine

whether or not the iteration should be terminated.

The PWL operators being compared are first subtracted and the

difference is simplified by elimination of redundant points. After sim-

plification, if the two PWL operators being compared are nearly equal,

the difference will have the form.

[, Y2] if it is defined for all values of the independent variable

or[Il, Y1 ]
x2 p y2  if it is defined for a semi-infinite range of values of the

_x3 y 3 J independent variable.

In the first case, if lyll-m , and ly2 I<., or in the second case, if

lyll<C, jY21<ex and I ,3I , the difference between the two PWL opera-
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tors being compared is close to zero and the comparison checks. The

value of 6 that is used depends on the accuracy desired in the final

solution.

D. A SAMPLE PROGRAM FOR PWL NETWORK ANALYSIS

A sample program will now be presented to illustrate how the PWL

operator subroutines are used to solve PWL-operator equations. The pro-

gram that was used to derive the input v-i characteristic of the network

of Fig. 43 is listed in Table 5, as reproduced from punched cards. The

information included in the COMMENT declarations is explanatory materi-

al that has no effect on the program.

The program is read into the computer following the PWL subroutines

listed in Appendix C. After the PWL operators have been read from data

cards, the iteration is carried out using Eqs. (154) and (155), (p. 106)
until the comparison between two successive approximation checks. Then

the input resistance is computed using Eq. (156). The values of

and Yk after each iteration and the final result are printed out on the

line printer.
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TABLE S. PROGRAM FOR ANALYSIS Of FIG. 43.

COMMENT READ IN R19 -IR2+I)9 -(R3+1)9 R49 YO S

P17.. FOR GSw(19195)S ENTER INPS

EPS1EEPS2=EPS3nEPS4uO. 000055

COMMENT START ITERATION S

FOR COUNT=(1-91.20)S BEGIN

COMMENT COMPUTE X(K+1) S

61.15 62*2S 63a5S Ha6* ENTER ABC$ 65=65 ENTER PRYS

COMMENT COMPUTE Y(K+1) S

G1.4S 62a35 63=6S Ha7S ENTER ABCS 65.75 ENTER PRTS

COMMENT COMPARE Y(K) AND Y(K*1) S

61.5S G2a7S ENTER COMPS IF BCOMPS GO P17AS

COMMENT REPLACE Y(K) WITH Y(K41)$

G1=7S HuSS ENTER TFR ENDS

COMMENT IF COMPARISON CHECKS, COMPUTE INPUT RESISTANCE S

P17A**G1w6S MusS ENTER ADDIS 61.1$ G2=SS Hu9S ENTER MULS

61.75 H=10$ ENTER ADDIS G1u4S 62=105 Hall$ ENTER MULS

61u9S G2a11S Hw12S ENTER ADDS 65*12S ENTER PRTS

Note- On key-pumeb equipment, the dollar sign is need instead Of the
semi-coles.
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X. CONCLUSIONS

A. APPLICATIONS OF PWL OPERATORS

PWL operators provide a systematic method for analyzing PWL networks

that is suitable for use with a digital computer. To analyze a non-

linear network, the characteristics of the nonlinear elements are approx-

imated by PWL curves, these curves are represented by PWL operators, the

network equations are written in terms of the PWL operators, and these

equations are solved to give the desired network characteristic.

PWL operators are most useful for determining the input and transfer
characteristics of resistive PWL networks. Series-parallel networks and

more general networks that contain two PWL resistors can easily be anal-

yzed in terms of the basic algebraic operations that have been defined

for PWL operators. The method has been extended to networks containing

three PWL resistors by introducing a new operation called trivolution,

and four or more PWL resistors can be handled by using a combination of

trivolution and iterative procedures. Since the transient response of

R-C, R-L, and L-C PWL networks can be expressed in terms of PWL opera-

tors, the use of PWL operators in the analysis of such networks looks

promiising.

The methods developed for the analysis of resistive PWL networks can

be extended to the limiting case of nonlinear networks through the use

of appropriate graphical procedures. If one is willing to carry out the

operations of addition, subtraction, multiplication, inversion, and tri-

volution graphically, the PWL-operator method that has been developed

can be applied directly to the nonlinear characteristics without first

making PWL approximations.

B. COMPARISON WITH OTHER METHODS

The main advantages of the PWL-operator method are that its system-

matic nature makes it relatively easy to program for a digital computer

and that unnecessary computation is kept to a minimum. An important dis-

advantage is that iterative methods are needed to solve many types of

NWL-operator equations.
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The breakpoint method and the method of assumed states for analysis

of PWL networks require that each PWL circuit element be represented by

a circuit model that contains ideal diodes, and the individual states

of these ideal diodes must be examined during the course of the analysis.

The NWL-operator method avoidG the necessity of drawing an ideal-diode

model and permits one to work directly in terms of the characteristic

curves of the PWL elements. When each PWL characteristic has several

sections, considerable work may be saved by using PWL operators. In the

breakpoint method, and especially in the method of assumed states, the

amount of work required goes up rapidly with the number of diodes. Much

unnecessary computation may be required before the final result is ob-

tained unless the problem solver can guess the nature of the solution on

the basis of his experience.

In the PWL-operator method, only those computations actually neces-

sary for the final result need be performed. In Stern's method, addi-

tion of two PWL characteristics requires that every section of one be

added to every section of the other, but in the PWL-operator method, a

selection of the sections to be added is made before the addition is

carried out. As an example, compare the amount of work involved in the

PWL-operator addition of Eq. (30) with the equivalent addition in Stern's

notation (Eq. A-9). The superiority of PWL operators in this example is

quite apparent. The result obtained in Stem's notation contains nine

sections, three of which are redundant.

During the course of the solution of a problem in Stem's notation,

the addition process frequently introduces redundant sections. The only

method Stern gives for elimination of redundant sections is to sketch

the PWL function each time addition is carried out. If the redundant

sections are not eliminated as they occur, the algebra becomes needless-

ly complicated, and the final expression obtained in the analysis of a

network that contains n diodes may have 2 n  terms. For a function of

two or more variables, elimination of redundant sections by sketching

the function is clearly impossible, and Stern does not give any method

of elimination in this case. Redundant sections are rarely introduced

in the addition of PWL operators, and if they are introduced, they are

easily eliminated.

- 167 -



The more concise PWL-operator notation is better suited for a digital

computer program than Stern's notation. Stern's method would be diffi-

cult to program for several other reasons. In particular, elimination of

redundant sections by sketching the function would be difficult. The

fact that a given PWL function can be expressed in many different forms

in Stern's notation would also cause trouble. The representation of a

given PWL function in terms of PWL operators in slope-intercept form is

unique. It is much easier to go back and forth between graphical and

PWL-operator representation of PWL functions than between graphical and

Stern's representation.

Stern does not explicitly state what class of problems can be solved

by his method. Just as in the PWL-operator method, once the equations

for a problem have been set up, there is no guarantee that they can be

solved. There are two places in the solution by Stern's method where we

may run into difficulty--the implicit equation theorem and the inversion

theorem. The conditions under which these theorems can be applied are

stated in Appendix A. Situations arise where the solution of equations

written in Stern's notation cannot be completed because the conditions

for applying one of these theorems are not satisfied.

Some problems that cannot be solved by PWL operators can be solved

by Stern's method and conversely. Some PWL-operator equations that can-

not be solved without iteration can be converted to Stern's notation and

solved directly. Since multi-valued PWL characteristics cannot be repre-+

sented explicitly in terms of 0 transformations, problems that involve

this type of characteristic cannot be solved by Stern's method. PWL

functions of two variables can be represented more easily in Stern's no-

tation than in PWL-operator notation, and some two-port network problems

which cannot be solved by PWL operators can be solved by Stern's method.

In problems that can be solved by both methods, the PWL-operator method

generally requires less work.

C. SUGGESTIONS FOR FUTURE WORK

This research has created as many new problems as it has solved.

Better methods are needed for the solution of PWL-operator equations

without the use of iteration. A method for generalizing PWL operators
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to represent functions of two variables would facilitate the analysis of

PWL two-ports. A more rigorous development of the theory, especially

for the case of multi-valued operators, would be helpful. In particular,
a rigorous proof that Eq. (63) cannot be solved in terms of the basic
algebraic operations is needed. Application of PWL-operator methods to

synthesis of PWL networks should be investigated. The most useful, and

probably the most difficult, extension of PWL-operator theory would be

the development of methods for the solution of PWL differential equations

in terms of PWL operators.
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APPENDIX A: STERN'S METHOD FOR ANALYSIS OF PWL NETWORKS

As discussed in Section II. E.1 PWL characteristic curves can be ex-+

pressed in terms of 0" transformations. Stern's algebra [Refs. 4,5]

for working with these transformations is summarized here for comparison

with the PWL-operator method.+

0- transformations are defined to transform vectors into scalars.

If p is the greatest member of the vector o, and q is the least

member, then i = p and C" = q

EXAKPL: (1,2,3)0 + = 3 (1,2,3)0- = 1

A vector addition, which is associative and commutative, is defined.

The components of the vector sum a $ p consist of all possible sums of

one component of a and one component of 0.

EMPIE: (1,2,3) s (4,6,8) = (5,6,7,8,9,10,11)

The product of a scalar c and a vector a = (al, a2,...,an) is

ca = (ca,, ca2,...,Can). Scalar multiplication is distributive with

c(a G)O) = cu 0 ca. The following rules are useful in the solution of

PWL-network problems:

+

+ c( ) if c><_o
(ca)0+ a Ca- if c>0(A-1)

(Cif c < 0
+

00 - ((-a)o'] (A-2)

+

If a. (a), a0" = a (A-3)

+ + +-

(C1013) 0" - C" + =" (A-4)

+ + +

(a', P) 0 = (a, 1) 0- (A-5)
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The inversion theorem provid$s a method for inverting PWL functions

that are expressed in terms of 0" transformations. If

+

y = F(x) = [If(x), f 2(x),...,Wn(X)]

and each fi(x) is a continuous, monotonically increasing function, then

x = F' 1 (y) = [f- 1 (y), f2"l(Y), f n'1 W) 0+ (A-6)

If the F,'s are monotonically decreasing, 0+ is replaced with 0" in

Eq. (A-6).

EXAMPLES:

y = (x + 2, 2x + 4)0 + has the inverse x = (y - 2, jy - 2)0-

y = (2x, -x + 1)0" is not invertible

y = [(x + 2, 2x + 4)0 + , 3x - 6]0 has the inverse

x = [(y - 2, jy - 2)0-, + 20

The implicit equation theorem states the conditions under which

+

F(x,y) = f 1 (xY),f 2 (x,y),...,fn(x,yY)"- M 0

can be solved explicitly for y. If each fi is continuous and mono-

tonically increasing (or decreasing) in y for any constant x, and

each equation fi(x,y) = 0 has an explicit solution y = gi(x), then

y = G(x) = [gl(x),g 2 (x),.. ,gn(x)]+) (A-7)

In particular, the equation

+
F(x,y) = (al +bX+CY, a2+b2x+c2y, ... , a n+bnx+cny)o" = 0

can be solved for y as a function of x if and only if all of the

ci's are non-zero and of the same sign.
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EXAMPLES:

(x+y+l, y-x)0+ - 0 has the solution y = (-x-l, x)0"

[(x+y+l, y-x)0, iy+3x-2] " = 0 has the solution y = [(-x-l,x) ,4-6x] +

Neither of these equations can be solved for x.

The same PWL function may be represented in a number of equivalent

forms. For example,

(yly 2 )0+ + (y 3 ,y4)0" = [(yl+y3, yl+y4 )0-, (y2 +y3 , y2 +y4 )0 ] +  (A-8)

+

In terms of 0" transformations, the sum of the PWL curves in

Fig. 18 is

y = C( , x+l)0¢, +210- + ((.+2, x-3)0+, 2x+l]0"

=f(p, x+l)0t + (4Ix+2, x-3)0+, (x, x+1)%' + (2x+ll),

(+2) + (.4+2, x-3)0, (x2) + (2x+ll)]"

[(X 3x 3x5
=(( +2,9 r-3, .+3, 2x-2)0+, (, +11, 3x+12)0+,

By making a sketch of this function, one can see that three of the terms

are redundant. Eliminating these terms, we obtain

3xx + 5 3x ,g]O

This result is equivalent to that obtained in Eq. (30). It is interest-

ing to note that although the PWL curve has only five sections, the

above expression requires six terms.
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APPENDIX B: REPRESENTATION OF PWL CURVES WITH ABSOLUTE VALUES

It is often possible to decompose a complex PWL function into a sum

of simpler PWL functions. The absolute-value function is a simple PWL

function that is useful for this purpose. Any continuous, single-valued

PWL function can be represented in terms of absolute values in the form

f(x) = a + bx + Z i Ix - bil (B-l)
i

where the bi is are the breakpoints. Since ix - b I changes slope from

-1 to +1 at x = bi, the slope of f(x) changes by an amount 2ci at

x = b i . Hence, if the slope of f(x) changes from ri_ to ri at bi,

ci (ri - ril) (B-2)

I,

When x is large and positive,

f(x) - a + bx +. ci (x - bi)
i

so if the slope of the last section is rn,

b=rn - ci (B-3)

Setting x - 0 gives

a - f(O) -Zcilbii (B-4)

As an example, for Fig. 5b,

13 3i11 -1+.li .l l +li i
v _I+3+ 1  - i+31 j- + i-41 (B-5)

PWL functions expressed in terms of absolute values are difficult

to manipulate. One can readily appreciate this difficulty if he attempts

to solve Eq.(B-5) for i. By going back to the graph of Fig. 5b, it is

possible to apply Eqs. (B-2), (B-3), and (B-4) to obtain
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3 3 jv+31 + 1 Iv+ll + Iv-31 Iv-41 (B-6)

but there does not appear to be any simple, direct method of getting

from Eq. (B-5) to Eq. (B-6).

Since the absolute-value function is single-valued, it is impossi-

ble to represent multi-valued PWL curves in the form of Eq. (B-i). How-

ever, multi-valued curves can often be represented in the more general

form

a + bx + cy + ai + bix + ciYI = 0
i

For example, the values of v2  and i2  that lie on the curve of Fig. 6d

satisfy the equation

32 v 2 -i 2 - 21 - jv 2  i+ 21 + v2 -2i 2 =0

The closed-loop characteristic of Fig. 9d can be expressed as

ji 1 - 2v1 + li1l = 2

The absolute-value function can be expressed in terms of a PWL op-

erator as

xI 0 (x) (B-7)

since both sides of the equation are equal to -x when x < 0 and equal

to +x when x > 0. Any equation that is written in terms of absolute

values can be converted to a PWL-operator equation by using Eq. (B-7).

Any PWL function that can e expressed in terms of absolute values

can be expressed in terms of 0" transformations and conversely. In an

expression that contains absolute values, the relationship

lxi = (-x, x) +  (B-8)

can be used to replace every absolute value with a e transformation.+

Going from " transformations to absolute values is more difficult.
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If x>y.,ix-yi =x -Yand (x+y+ Ix-yI)=x;

if x < y, ix - Y - y - x and (x + y + Ix - yI) = y . Hence

J(x + y + Ix - YI) = (x,Y)0+  (B-9)

and similarly

(X + y - Ix - YI) = (x,y)0" (B-10)

Equations (B-9)I (B-10), and (24) can be used to convert any expression

that contains 0 transformations into an equivalent expression that con-
tains absolute values. For example,

(x,y,z)O+ = ((x,y)#+, z]%

= [ f(x + y + ix - Yl) + z + j'(x + y + Ix - YI) - Z1]

An attempt was made to develop a method for analyzing NWL networks,

based on the absolute-value representation for PWL curves. This effort

was abandoned because any expression written in terms of absolute values

is easily converted to PlWL-operator notation or to Stern's notation,

both of which are easier to manipulate than absolute values.
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APPENDIX C: PWL-OPERATOR SUBROUTINES

The subroutines for working with PWL operators, which are described

in Section IX. C., are listed here for reference. These subroutines

have been thoroughly tested using various combinations of single- and

multi-valued PWL operators. Any of the ten types of PWL operators shown

in Fig. 17 may be used as input, with the restriction that infinite

slopes are not permitted in the addition, subtraction, multiplication,

and trivolution subroutines.

To increase the operating speed of the subroutines, all of the PWL

operators are stored in a single one-dimensional array, A, rather than

in multi-dimensional arrays. Instead of the notation XAj. YAJ, XXK,

YBK, XDL, and YD which is used in Section IX. C., the notation

A(XA+J), A(YA+J), A(XB+K), A(VB+K), A(XD+L), and A(YD+L) is used in the

program.

The programs for the problems to be solved should be placed after

the subroutines. The first statement in each program should be labelled

P1, P2, or P3, etc., and the last statement should be GO NEXT;. The

SWITCH statement at the end of the listing, which provides a means for

selecting the problem to be solved, should be filled in with the appro-

priate statement labels.

The reader should refer to the Burroughs Algebraic Compiler Manual

[Ref. 81 for a complete explanation of the compiler language.
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COMMENT P'ECEWISE-LINEAR OPERATOR SUBROUTINESS

FLOATING AoT...,YAPYBPEPS...,UVO1,Q2,RCYCSLOPES
BOOLEAN Boo.,NORMREVJREVKCORNJCORNKENDJENDKFIRST.LASTS
INTEGER OTHERWISES
ARRAY A(3800)oN(19)$
MA=200S MB=100S PROBzOS EPS1=O.OOOO1S EPS2aEPS3&EPS4=O.OOO1S

GO NEXT$
INPUT DATA(N1,FOR I1=(1,1,N1)$(A(Xl+I1),A(Y1+I1)flS
OUTPUT ANS(COUNTN1,FOR I1=( 1,1Nl)S(A(Xl+I1l ,A(Y1+I1) ))S
FORMAT FMT( 14,I5,4(X15.6,Bl.Xllo6),W4,(B9,4CX15o6,B1,Xllo6).WOJ )S
FORMAT HDG1(*REJECT*tW)S FORMAT HDG2(*L TOO LARGE*9W)S
FORMAT HDG3(*COMPARISON CHECKS*,W)S
FUNCTION SLOPECXYM)=(A(Y+M+1)-A(Y+M) )/(A(X+M+1)-A(X+M) )S.
FUNCTION BF(UV)=NORM EQIV (U LSS V)S

SUBROUTINE INPS BEGIN X1z(G5-1)MAS Yl=X1+MBS COUNTmG5+900S
READ(S$DATA)S NIG5)zN1S WRITE(SSANSiFMT)S RETURN END$

SUBROUTINE PRTS BEGIN Xl=(G! -I)MAS Y±=Xj+MBS Nl=N(G5)S
IF ABS(N1) GTR MBS GO NEXTS WRITE(SSANS9FMT)S RETURN ENDS

SUBROUTINE SETS BEGIN XA=(G1-l)MAS YA=XA+MBS XBw(G2-l)MAS YB=XB.MBS
XD=(H-1)MAS YD=XD+MBS NA=N(H)-N(Gl)S NBuN(G2)S RETURN ENDS

SURROUTINE SHIFTS BEGIN FOR llz(1,1,NA)S BEGIN
A(XD+IJJ=A(XS+11)S A(YD+I1)%A(YSI11 ENDS RETURN ENDS

SUBROUTINE TFRS BEGIN ENTER SETS XS=XAS YSvYAS ENTER SHIFTS
RETURN ENDS

SUBROUTINE INVS BEGIN ENTER SETS XS=YAS YSzXAS ENTER SHIFTS
X=XDS Y=YDS NS=NAS ENTER REORDS RETURN ENDS

SUBROUTINE ORD$ BEGIN B5=(SLOPE(XtYol) LEO SLOPE(XgYtNS-1))S
B6=(A(X+l) LEO A(X+2') AND NOT 85 OR (A(X+NS-1) LEO A(X+NSI)

AND B5$ RETURN ENDS

SUBROUTINE REORDS BEGIN ENTER ORDS IF B6S RETURNS NTzNS/2S
FOR I1:(191,NT)S FOR XS=X9YS BEGIN TzAfXS.I1iS

A(S1)AX+S1+) A(XS+NS-1I+1)zT ENDS RETURN ENDS

SUBROUTINE SIMPLIFYS BEGIN MiziS M2=2S FOR M3=(3o1,M4)5 BEGIN
T1=A(X+M3)-A(X+Ml)$ T2=A(Y+M3)-A(Y+M1)S T3uTloT1+TZ.T2+O.OOO1S
IF ABS(A(X+M2) .T2-A(Y+M2).Tl+AjX.M3).A(Y.Ml)-A(X+M1).A(Y+M3))/T3

GTR EP52S (M1=M2S M2zM2+1)S
IF M2 NEQ M3S BEGIN A(X+M2)=A(X+M3)$ A(Y+M2)aA(Y+M3) END ENDS
N(H)='M2S RETURN END$

SURROUTINE An[)$ 9EGIN ENTER SETS OPzOS B6=B7zlS ENTER ASMS
ENTER REOROS RETURN ENDS

SUBROUTINE SUBS BEGIN ENTER SETS OP=1S B6sB7zlS ENTER ASMS
ENTER REORDS RETURN ENDS

SUBROUTINE MULS BEGIN ENTER SETS OPz2S X=YBS YzYB=XBS XBmXS BimiS
NS=NBS ENTER ORD$ ENTER ASMS ENTER REORDS RETURN ENDS
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SUBROUTINE COMPS BEGIN H=19S ENTER SUBS
IF N-119) GTR 3S GO COMPlS IF ABS(A(YD+1)) LSS EPS3S
IF ABS(A(YD+2)) LSS EPS3S
IF (N(19) EQL. 2) OR (ABS(A(YD+3fl LSS EPS3)S BEGIN

WRITE(SSHDG3)S RCOMPzlS RETURN ENDS
COMP1*o8COMPzOS RETURN ENDS

SUBROUTINE ASMS BEGIN
COMMENT SELECT MODE S

B1=(A(XA+1) LEO A(XA+2))S B2=(A(XA+NA-1) GTR A(XA+NA))S
B3=(A(XB+l) LEG A(XB+2))$ B4x(AfXB+NB-I) GTR A(XB+NB))S
IF NOT B6S (BTE=B35 B3=B4S B4zBTE)S
IF NOT 875 (BTE=BlS B1=B2S B2zBTE)S
NORM=B1 AND 83S IF NOT NORM AND (B2 OR B4)S GO REJECTS
REVK=(B3 AND NOT Bi) EOIV 565 REVJ=(B1 AND NOT B3) EQIV B7S
DJuDK=J=Kz15 JP=KPz2S IF REVJS (J=NAS DJ=-1S JP=NA-1)S
IF REVKS (KuNPS DK=-1S KP=NB-1)S L=1S FIRSTzlS LAST=OS

COMMENT COMPARE BREAKPOINTS S
COMPAREo@IF ABS(A(XA+J)-A(XB+K)) LSS EP51S GO ADOBOTHS

IF OF(A(XA+J),A(XB+K)HS GO ADDJS GO ADDKS
ADDJe.YBP=(A(YB+K)-A(YB+KPfl (A(XA+J)-A(XB+KP))/ (A(XB+K)-A(XB+KPfl

+AIYB+KP)S SWITCH OP.(SUBJ*MULJ)S A(YD+L)=YBP.A(YA.J)S
A13*eA(XD+L)BA(XA+J)S
13.. IF FIRSTS GO 11S IF LASTS GO 15S JP=JS J=J+DJS

IF F(A(XA+JP)tA(XA+JH)S GO 12S DKz-DKS KP.KS KwK+DKS
MDCH..NORMz NOT NORMS GO 12S
ADDKo.YAPu(A(YA+J)-A(YA+JP) )(A(XR+K)-A(XA+JP))/(AIXAJ)-A(XA+JPHI

+A( YA+JP) S SWITCH OP. (SUBK9MULK)S A(YD+L)aYAP+A(YB+K)S
A14;*A(XD+L) -A(XB+K)S
14ooIF FIRSTS GO 11S IF LASTS GO 1S$ KPuKS K=K4DKS

IF BF(A(XB+KP)oA(XB+K)35 GO 12S DJm-DJS JPuJS J=J+DJS GO MDCNS
ADDBOTH..SWITCH OP9(SUBBOTH*MULBOTH)S A(YD+L)nA(YA+JJ+A(YB+K)S
Al1**A(XD+L ) A(XA+J )S
11..FIRSTuOS IF LASTS GO 15S JPwJS KPwKS JxJ+DJS K=K+DKS
COMMENT TEST FOR CORNER POINTS S

CORNJ=BF(A(XAJ),A(XAJP))S CORNKsBF(A(XB+K)PAIXB+KP))S
IF CORNJ AND CORNKS GO MDCHS
IF CORNJS (K=K-ZDKS DK=-DKS GO MlDCH)S
IF CORNKS (JnJ-2DJS DJu-DJS GO MDCH)S

12**LNL+IS IF L GTR MOS GO LRGS
COMMENT CHECK END CONDITIONS S

ENDJz(J EQL 1) OR (J EQL NA)S ENDKU(K LOL 1) OR (K EOL NO)$
IF ENDJ AND ENDKS (LASTlIS NORMaNOT NORMS GO COMPARE)$
IF ENDJS GO ADDKS IF ENDKS GO ADDJS GO COMPARES

I5..XzXDS Y=YDS M4uLS ENTER SIMPLIFYS NS-M2S RETURNS
MULJ.A(XD+L)=YBPS A(YD+L)=A(YA+J)S GO 13S
MULI;*A(YD4L)uYAPS A(XD+L)sA(YB+K)S GO 14S
MULBOTH**A(XD+LJaAfYB+K)$ A(YD+L,.A(YA.J)S GO 115
SUBJ..A(YD4L)uA(YA+J)-YBPS GO A13S
SUBK..A(YD4L)uYAP-A(YB+K)S GO A14S
SUBBOTH..A(YD.L )uA(YA+J)-A( YB+K) S GO All S
REJECT*. WRITE(SSHDGI)S
16..X1xXAS VimYAS NizNAS WRITE(SSANSFMT)S

X1*XBS Y1sYOS N1=NBS WRITE(SSANSFMT)S GO NEXTS
LRGo. WRITE(SSHDG?)S GO 16 ENDS
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SUBROUTINE ABC$ BEGIN
B8=0S GTI=G1S GT2uG2S GT3uG3S HTaHS

COMMENT COMPUTE ARRAY LOCATIONS S
18o*AX=(G1-1)MAS AYxAX+MBS BXa(G2-1)MAS BYuBX+MBS

NB=N(GlHS NA=NfG2)S CXm(G3-1)MAS CYmCX+MBS NC=N(G3)-IS
DXz(H-I)MAS DY=DXMRS
XA=17MAS YA=BXS XBzXA+MB$ YBwAXS XD1l8MAS YDwXD+MBS
8L=OS 1=0S M=IS 0Pz25

?2..IF BLS GO 23S I=1+15 BLx(I EOL NC)5
COMMENT COMPUTE ITH PARTIAL ANSWER S
19..Q1=ACCX+I)S G2=A(CX+I+1)S RC=SLOPECCXCYU)S YCaA(CY+I)-RCoQ1S

FOR J=(191 ,NB)S A(XB+J)uA(AY+J)-YC-RC*A(AX+J)S
FOR K=(191 ,NA)S A(XA+K)xA(BY+K)-RCoA(BX+K)S
X=XAS Y=YAS NSuNAS ENTER OROS B7sB6S
X=XBS Y=YBS NSzNBS ENTER ORD$ ENTER ASMS
FOR Jz(191 ,NS)S A(XD+J~aA(XD+J)-AIYD+J)S
X=XDS Y-YDS ENTER REORDS

COMMENT MOVE ENDPOINTS OUT S
IF A(XD+1) 6TR Q2-EPS4S BEGIN

A(Xfl)=2oOA(XD+IJ-A(XD+2)S A(YD+l~m2oOA(YD+1)-A(YD+2) ENDS
IF A(XO+NS) LSS 02+EPS4S BEGIN

A(XD+NS)=2.OA(XD+NS)-AIXD+NS-1)S
A(YD+NS)z2*OA(YD+NS)-A(YD+NS-1) ENDS

COMMENT SELECT SECTIONS FOR ANSWER S
J=1S LAST=OS IF I EQL 1S GO 21S

20**IF A(XD+J) LSS 01-EPS4S (J=J,1S GO 2O)S IF NOT BL* GO 25S
21 .A( DX+M =A (XD+J)S A(DY+M) =A(YD+J)S

4 24o*M=M+1S IF M GTR MBS GO LRGS
J=J+1$ IF J GTR NSS GO 22$
IF LAST$ GO 22S IF RLS GO 21S

25o.IF ARS(A(XD+J)-02) LSS EP54S (LASTu1S GO 21)S
IF A(XFD+J) LSS 02S GO 21$
A(DX+M).02$ A(DY+M):5LOPE(XDYDJ-l~.(Q2-A(XD+J-1))+A(YD+J-1)s
LASTI$S GO 245

23*.M4=M-1$ X=DX$ Y=DY$ ENTER SIMPLIFYS
IF 8$ (G1=H$ H=HT$ ENTER INV)$

COMM;NT CHECK ANSWER S
Cn1=HTS H=19S ENTER ADDIS G1=GTlS G2=19S H=1SS ENTER MULS
31I=GT2S G2=HTS H=19S ENTER M1ULS G11l8S 62=195 H=17S ENTER SUBS
TEPS2=EP52$ TEPS3=EPS3S EP52=EPS3O.OO01S
-,1=17S G2=0T3$ ENTER COMPS EPS2=TEPS2S EPS3uTEPS3S
IF RCCMPS R :TURNS G5=HTS ENTER PRTS
:F R$ -3FC-IN WRITE(SSHDG1)S GO NEXT ENDS

~SG':=CT1$ G2=GT3S G3=GT2$ H=17S GO 18 ENDS

;A,':lOUTINE ADD1i BEG~IN FNTER SFTS FOR Jlu(1919NA)S BEGIN
A(X'+Jl)=A(XA*Jfl5 A(YD+jl)=ArXA.Jl).AcYA+j1) ENDS RETURN ENDS

.uJ,'CUTINE SG6I1 "L -IN -- qt SETS FOR J1=(1,1,NA)S BEGIN
A(K')+Jl)=A(XA+Jli$ A(YDK+J)=A(YA+J1)-A(XA+jl) ENDS RETURN ENDS

COMMENUT TYAI~I P'RD)4AM START,. H;:?L. SELECT PROBLEM TO BE SOLVED S
NFXT.PRJB=R~s+1S WITCH PROB,(P1,P2,P3 )s
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